Programming Parallel Computers

Jukka Suomela • Aalto University • ppc.cs.aalto.fi

Part 3A:
All three forms of parallelism in action

Parallel computing resources

- Multicore: factor 4
- 4 cores, each of them can run independent threads
- Superscalar: factor 2
- each core can initiate 2 multiplications per clock cycle
- Pipelining: factor 4
- no need to wait for operations to finish before starting a new one
- Vectorization: factor 8
- each multiplication can process 8 -wide vectors

Parallel computing resources

- Multicore: factor 4
- 4 cores, each of them can run independent threads

OpenMP

(part 2A)

- Superscalar: factor 2
- each core can initiate 2 multiplications per clock cycle
- Pipelining: factor 4
- no need to wait for operations to finish before starting a new one
- Vectorization: factor 8
- each multiplication can process 8 -wide vectors

Parallel computing resources

- Multicore: factor 4
- 4 cores, each of them can run independent threads
- Superscalar: factor 2
- each core can initiate 2 multiplications per clock cycle

Instructionlevel parallelism (part 1D)

- Pipelining: factor 4
- no need to wait for operations to finish before starting a new one
- Vectorization: factor 8
- each multiplication can process 8-wide vectors

Parallel computing resources

- Multicore: factor 4
- 4 cores, each of them can run independent threads
- Superscalar: factor 2
- each core can initiate 2 multiplications per clock cycle
- Pipelining: factor 4
- no need to wait for operations to finish before starting a new one
- Vectorization: factor 8
- each multiplication can process 8 -wide vectors

Vector instructions

OpenMP parallel for loop

\#pragma omp parallel for
for (int i = 0; i < 10; ++i) \{ c(i) ;
\}
thread 0: c(0) c(1) c(2)
thread 1: $c(3) c(4) c(5)$
thread 2: c(6) c(7)
thread 3: c(8) c(9)

Instruction-level parallelism

Bad: dependent
a1 *= a0;
a2 *= a1;
a3 *= a2;
a4 *= a3;
a5 *= a4;

Good: independent
b1 *= a1;
b2 *= a2;
b3 *= a3;
b4 *= a4;
b5 *= a5;

Vector types

float8_t a, b, c;
a = ...;
b = ...;
$c=a+b ;$

Similar behavior, but much more efficient code:
one vector addition
float a[8], b[8], c[8];

$$
\begin{aligned}
& a=\ldots ; \\
& b=\cdots \\
& c[0]=a[0]+b[0] ; \\
& c[1]=a[1]+b[1] ; \\
& c[2]=a[2]+b[2] ; \\
& c[3]=a[3]+b[3] ; \\
& c[4]=a[4]+b[4] ; \\
& c[5]=a[5]+b[5] ; \\
& c[6]=a[6]+b[6] ; \\
& c[7]=a[7]+b[7] ;
\end{aligned}
$$

Is this enough?

Example

- "Mandelbrot iteration":
- c = input
- $x=0$
- repeat N times: $x=x * x+c$
- result = x

$$
c=0.2:
$$

$$
N=5\left\{\begin{array}{l}
x=0.000^{2}+0.2=0.200 \\
x=0.200^{2}+0.2=0.240 \\
x=0.240^{2}+0.2 \approx 0.258 \\
x \approx 0.258^{2}+0.2 \approx 0.266 \\
x \approx 0.2662+0.2 \approx 0.271
\end{array}\right.
$$

$$
\begin{aligned}
& c=0.3: \\
& x=0.000^{2}+0.3=0.300 \\
& x=0.300^{2}+0.3=0.390 \\
& x=0.390^{2}+0.3 \approx 0.452 \\
& x \approx 0.452^{2}+0.3 \approx 0.504 \\
& x \approx 0.504^{2}+0.3 \approx 0.554
\end{aligned}
$$

Example

- "Mandelbrot iteration" for 512 values, for a very large N :
- c = input[i]
- $\mathrm{x}=0$
- repeat \boldsymbol{N} times: $\mathrm{x}=\mathrm{x}$ * $\mathrm{x}+\mathrm{c}$
- result[i] = x
- Calculation of result[0]:
- very long dependency chain, cannot parallelize
- Calculation of result[0] and result[1]:
- independent of each other!

```
for (int i = 0; i < 512; ++i) {
    float x = 0.0;
    float c = input[i];
for (long long n = 0; n < N; ++n) {
x = x * x + c;
}
result[i] = x;
```

Naive sequential version

```
#pragma omp parallel for
for (int i = 0; i < 512; ++i) {
    float x = 0.0;
    float c = input[i];
for (long long n = 0; n < N; ++n) {
    x = x * x + c;
}
result[i] = x;
```

OpenMP
\}

```
#pragma omp parallel for
for (int i = 0; i < 64; ++i) {
    float c[8], x[8];
    for (int j = 0; j < 8; ++j) {
        x[j] = 0.0; c[j] = input[i][j];
    }
    for (long long n = 0; n< N; ++n) {
        for (int j = 0; j < 8; ++j) {
        x[j] = x[j] * x[j] + c[j];
        }
    }
    for (int j = 0; j < 8; ++j) {
        result[i][j] = x[j];
    }

\section*{Instructionlevel parallelism}
```

\#pragma omp parallel for
for (int i = 0; i < 8; ++i) {
float8_t c[8], x[8];
for (int j = 0; j < 8; ++j) {
x[j] = float8_0; c[j] = input[i][j];
}
for (long long n = 0; n < N; ++n) {
for (int j = 0; j < 8; ++j) {
x[j] = x[j] * x[j] + c[j];
}
}
for (int j = 0; j < 8; ++j) {
result[i][j] = x[j];
}

```
\}

\section*{Vector operations}
\#pragma omp parallel for

\section*{Using 4 threads evenly}
    float8_t c[8], x[8];
    for (int \(\mathrm{j}=0\); j < \(8 ;++\mathrm{j}\) ) \{
        x[j] = float8_0; c[j] = input[i][j];
    \}
    for (long long \(\mathrm{n}=0\); \(\mathrm{n}<\mathrm{N}\); ++n)
        for (int \(\mathrm{j}=0 ; \mathrm{j}<8 ;++\mathrm{j}\) )
        \(x[j]=x[j]\) * \(x[j]+c[j]\);
        \}
    \}
    for (int \(\mathrm{j}=0\); j < 8; ++j) \{
    8-wide vector operations result[i][j] = x[j];
\}

\section*{Performance?}
- \(N=1\) billion
- we do 1024 billion arithmetic operations
- running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds
- Got: 420 billion single-precision arithmetic operations / second

\section*{Happy?}

\section*{Performance!}
- \(N=1\) billion
- we do 1024 billion arithmetic operations
- running time on 3.3 GHz 4 -core Skylake CPU: 2.44 seconds
- Got: 420 billion single-precision arithmetic operations / second
- Theoretical maximum for this CPU: \(\approx 422\) billion / second

\section*{Cheating?}
- Tiny input, tiny output
- Everything in inner loops fits in CPU registers
- No memory accesses in inner loops
- It would be much slower if we had any memory accesses in the performance-critical parts
-What to do if you must read some input in your inner loops?```

