
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 3A:
All three forms of parallelism in action

Parallel computing resources

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

2

Intel Core i5-6500
single-precision
floating-point
multiplication

Parallel computing resources

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

3

OpenMP
(part 2A)

Parallel computing resources

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

4

Instruction-
level

parallelism
(part 1D)

Parallel computing resources

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

5

Vector
instructions

(part 2B)

OpenMP parallel for loop

#pragma omp parallel for
for (int i = 0; i < 10; ++i) {

c(i);
}

6

c(0) c(1) c(2)thread 0:
thread 1:
thread 2:
thread 3:

c(3) c(4) c(5)

c(6) c(7)

c(8) c(9)

part 2A

Instruction-level parallelism

Bad: dependent

a1 *= a0;

a2 *= a1;

a3 *= a2;

a4 *= a3;

a5 *= a4;

Good: independent

b1 *= a1;

b2 *= a2;

b3 *= a3;

b4 *= a4;

b5 *= a5;

7

part 1D

Vector types

8

float8_t a, b, c;

a = ...;
b = ...;
c = a + b;

float a[8], b[8], c[8];

a = ...;
b = ...;
c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];
c[3] = a[3] + b[3];
c[4] = a[4] + b[4];
c[5] = a[5] + b[5];
c[6] = a[6] + b[6];
c[7] = a[7] + b[7];

≈
Similar behavior,
but much more
efficient code:

one vector addition

part 2B

Is this enough?

9

Example

• “Mandelbrot iteration”:
• c = input
• x = 0
• repeat N times: x = x * x + c
• result = x

10

c = 0.2:
x = 0.0002 + 0.2 = 0.200
x = 0.2002 + 0.2 = 0.240
x = 0.2402 + 0.2 ≈ 0.258
x ≈ 0.2582 + 0.2 ≈ 0.266
x ≈ 0.2662 + 0.2 ≈ 0.271

c = 0.3:
x = 0.0002 + 0.3 = 0.300
x = 0.3002 + 0.3 = 0.390
x = 0.3902 + 0.3 ≈ 0.452
x ≈ 0.4522 + 0.3 ≈ 0.504
x ≈ 0.5042 + 0.3 ≈ 0.554

N = 5

Example

• “Mandelbrot iteration” for 512 values, for a very large N:
• c = input[i]
• x = 0
• repeat N times: x = x * x + c
• result[i] = x

• Calculation of result[0]:
• very long dependency chain, cannot parallelize

• Calculation of result[0] and result[1]:
• independent of each other!

11

for (int i = 0; i < 512; ++i) {

float x = 0.0;
float c = input[i];

for (long long n = 0; n < N; ++n) {

x = x * x + c;

}

result[i] = x;

}
12

Naive
sequential

version

#pragma omp parallel for
for (int i = 0; i < 512; ++i) {

float x = 0.0;
float c = input[i];

for (long long n = 0; n < N; ++n) {

x = x * x + c;

}

result[i] = x;

}
13

OpenMP

#pragma omp parallel for
for (int i = 0; i < 64; ++i) {

float c[8], x[8];
for (int j = 0; j < 8; ++j) {

x[j] = 0.0; c[j] = input[i][j];
}
for (long long n = 0; n < N; ++n) {

for (int j = 0; j < 8; ++j) {
x[j] = x[j] * x[j] + c[j];

}
}
for (int j = 0; j < 8; ++j) {

result[i][j] = x[j];
}

}
14

Instruction-
level

parallelism

#pragma omp parallel for
for (int i = 0; i < 8; ++i) {

float8_t c[8], x[8];
for (int j = 0; j < 8; ++j) {

x[j] = float8_0; c[j] = input[i][j];
}
for (long long n = 0; n < N; ++n) {

for (int j = 0; j < 8; ++j) {
x[j] = x[j] * x[j] + c[j];

}
}
for (int j = 0; j < 8; ++j) {

result[i][j] = x[j];
}

}
15

Vector
operations

#pragma omp parallel for
for (int i = 0; i < 8; ++i) {

float8_t c[8], x[8];
for (int j = 0; j < 8; ++j) {

x[j] = float8_0; c[j] = input[i][j];
}
for (long long n = 0; n < N; ++n) {

for (int j = 0; j < 8; ++j) {
x[j] = x[j] * x[j] + c[j];

}
}
for (int j = 0; j < 8; ++j) {

result[i][j] = x[j];
}

}
16

8-wide vector
operations

Plenty of room for
instruction-level
parallelism here

Using 4 threads
evenly

“input” and “result”
are here 8×8×8 arrays

Performance?

• N = 1 billion
• we do 1024 billion arithmetic operations
• running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds

• Got: 420 billion single-precision arithmetic operations / second

17

Happy?

Performance!

• N = 1 billion
• we do 1024 billion arithmetic operations
• running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds

• Got: 420 billion single-precision arithmetic operations / second

• Theoretical maximum for this CPU: ≈ 422 billion / second

18

Yes!

Cheating?

• Tiny input, tiny output

• Everything in inner loops fits in
CPU registers

• No memory accesses in inner loops

• It would be much slower if we had any memory accesses
in the performance-critical parts

• What to do if you must read some input in your inner loops?

19

CPUs are also very good at
this kind of operations
• key operation: FMA

(fused multiply and add)
• single instruction for

d = a * b + c

