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Part 3A:

All three forms of parallelism in action




Intel Core 15-6500

Parallel computing resources )55 o

multiplication

» Multicore: factor 4
4 cores, each of them can run independent threads

 Superscalar: factor 2
« each core can initiate 2 multiplications per clock cycle

* Pipelining: factor 4
* no need to wait for operations to finish before starting a new one

» Vectorization: factor 8
« each multiplication can process 8-wide vectors
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Parallel computing resources

» Multicore: factor 4
4 cores, each of them can run independent threads

 Superscalar: factor 2
 each core can initiate 2 multiplications per clock cycle

* Pipelining: factor 4
* no need to wait for operations to finish before starting a new one

- Vectorization: factor 8 Vector

« each multiplication can process 8-wide vectors instructions
(part 2B)
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OpenMP parallel for loop

#pragma omp parallel for
for (int 1 = 0; 1 < 10; ++1i) {
c(i);

}
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Instruction-level parallelism

Bad: dependent Good: independent
al *= ab; 01 *= al;
az2 *= al; 02 *= a2;
a3 *= a2, 03 *= a3,
a4 *= a3; 04 *= a4,
ab *= a4; D5 *= ad;



Vector types

float8_t a, b, c; float a[8], b[8], c[8];
P~
a = : N a = ...
b = ...; b = .
c =a+b; c[B] = a[@] + b[O];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];
Similar behavior, C:3’{: _ a:j: N E:i:’
but much more clal=ant T oolaly
efficient code: C:5: B a:5: T b:5:'
one vector addition cl6] = al6] + bl6];
cl7] = al7] + b[7];




Is this enough?



c =0.2:

Examp]e ~ x=0.0002+0.2 =0.200
x =0.2002+ 0.2 =0.240
N=5—< x=0.240%2+0.2=0.258
« “Mandelbrot iteration”: x ~ 0.258% + 0.2 =~ 0.266
e c = input _ x=0.266%+0.2=0.271
X = 0
* repeat Ntimes: X = X * X + C
* result = x c=03

X =0.000%+ 0.3 =0.300
X =0.3004+ 0.3 =0.390
X =0.390% + 0.3 = 0.452
X = 0.452?+ 0.3 = 0.504
X ~0.504% + 0.3 = 0.554



Example

» “Mandelbrot iteration” for 512 values, for a very large N:
e c = input[i]
X = 0@
* repeat Ntimes: X = X * X + C
e result[i] = x

e Calculation of result[9]:
« very long dependency chain, cannot parallelize

» Calculation of result[0] and result[1]:
* independent of each other!
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for (int 1 = 0; i < 512; ++1i) {

float Xx 0.0;
float ¢ = input[i];

for (long long n = 0; n < N; ++n) {

X =X % X + C,;

} Naive
sequential
result[i] = x; version
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#pragma omp parallel for
for (int 1 = 0; i < 512; ++1i) {

float x = 6.0;
float ¢ = input[i];

for (long long n = 0; n < N; ++n) {

X =X*X+ C;

result[i] = x;
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#pragma omp parallel for
for (int 1 = 0; 1 < 64; ++i) {
float c[8], x[8];
for (int j = 0; j < 8; ++j) {
x[j] = 08.0; c[j] = input[i][j];
}
for (long long n = 0; n < N; ++n) {
for (int j = 0; j < 8; ++j) {
x[i1 = x[3] » x[j] + clil;

} Instruction-
for (int j = 0; j < 8; ++j) {

level
parallelism

result[i][j] = x[j];
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#pragma omp parallel for
for (int 1 = 0; 1 < 8; ++1i) {
float8_t c[8], x[8];
for (int j = 8; j < 8; ++j) |
x[j] = float8_0; c[j] = input[i][]];
}
for (long long n = 0; n < N; ++n) {
for (int j = 0; j < 8; ++j) {
x[i1 = x[3] » x[j] + clil;

}
}
for (int j = 0; j < 8; ++j) { Vect_or
result[i][j] = x[j]; operations
}
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#pragma omp parallel for
for (int i = 0; i < 8; ++i) {
float8_t c[8], x[8];

for (int j = 8; j < 8; ++j) {
x[j] = float8_0; c[j] = input[i][]];

Using 4 threads
evenly

Plenty of room for
) instruction-level

for (long long n = @; n < N; ++n) { parallelism here
for (int j = 0; j < 8; ++j) {

x[§] = x[j] * x[j] + cljl;

8-wide vector

}
for (int j = 0; j < 8; ++j) {

operations
result[i][j] = x[j];

“Input” and “result”
; are here 8x8x8 arrays
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Performance?

* N =1 billion
« we do 1024 billion arithmetic operations
 running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds

» Got: 420 billion single-precision arithmetic operations / second

Happy?
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Performance!

* N =1 billion
« we do 1024 billion arithmetic operations
 running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds

» Got: 420 billion single-precision arithmetic operations / second

e Theoretical maximum for this CPU: = 422 billion / second
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CPUs are also very good at

Che ating? this kind of operations

« Kkey operation: FMA
(fused multiply and add)

* Tiny input, tiny output » single instruction for
ynp y P d=a*b+c

 Everything in inner loops fits in
CPU registers

 No memory accesses in inner loops

* It would be much slower if we had any memory accesses
in the performance-critical parts

« What to do if you must read some input in your inner loops?
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