
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 3C:
Reusing data in cache

Reading little vs. reading efficiently

• Previous part:
• how to organize code so that you read as little as possible
• read once to registers, use it many times
• accessing registers is free
• this should be always your plan A

• This part:
• how to make sure that you can read as fast as possible
• organize memory access so that you benefit from cache memory
• accessing cache is not as fast as registers
• worry about this when your plan A failed…

2

3

CPU

main
memory

L3
cache

core L2 cacheregisters L1arithmetic

arithmetic

core L2 cacheregisters L1arithmetic

arithmetic

core L2 cacheregisters L1arithmetic

arithmetic

core L2 cacheregisters L1arithmetic

arithmetic

How do caches work?

• When your program reads anything that is in the main memory:
• CPU tries to get it from L1 cache
• if not there, try L2 cache
• if not there, try L3 cache
• if not there, get from main memory
• CPU automatically stores it in caches if it was not there yet
• makes space by throwing away some not-so-recently-used values

4

5

CPU

main
memory

32 GB

L3
cache

6 MB

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

How do caches work?

• Smallest meaningful unit of data: cache line = 64 bytes
• data in caches is organized in cache lines
• data is transmitted between main memory and caches in cache lines
• you need just 1 byte — you will also get 63 other bytes around it
• you waste bandwidth if you don’t take this into account

• It makes sense to access e.g. consecutive array elements
• the first memory reference brings the whole cache line to caches
• the next memory references get data from cache

6

How to benefit from cache memory?

• You need to design the memory access pattern in your code
so that you benefit from cache memory as much as possible

• Most of your memory reads should refer to elements
that you have recently read
• or at least are in the same cache line as those

that you have recently read

• Some examples of what this might mean in practice…

7

8

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Input
elements

9

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Output
array

Input
elements

10

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Output value (i, j)
is computed from
orange element i

and blue element j

11

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

12

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

13

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

14

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

15

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

16

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

17

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

18

f

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

19

f

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

a b c d e f g h

k l m n o p q r

20

f

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

f

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

f

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

= “+”

a b c d e f g h

k l m n o p q r

a b c d e f g h

k l m n o p q r

Putting it
together
Baseline: 99 s

Final: 0.7 s

Factor-151 speedup

93% of theoretical
maximum

21

