
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 6A:
Designing parallel algorithms

Three concepts

• Computational problem
• specifies what we want
• e.g.: sort n numbers

• Algorithm that solves it efficiently
• tells how to solve it, on a somewhat abstract level
• e.g.: quicksort

• Efficient implementation of the algorithm
• actual C++ code that works well on real computers
• e.g.: std::sort implementation in the GNU C++ Library

2

Three concepts

• Computational problem
• specifies what we want
• e.g.: sort n numbers

• Parallel algorithm that solves it efficiently
• tells how to solve it, on a somewhat abstract level
• e.g.: parallel quicksort

• Efficient parallel implementation of the algorithm
• actual C++ code that works well on real computers
• e.g.: __gnu_parallel::sort

3

Three concepts

• Computational problem
• specifies what we want
• e.g.: sort n numbers

• Parallel algorithm that solves it efficiently
• tells how to solve it, on a somewhat abstract level
• e.g.: parallel quicksort

• Efficient parallel implementation of the algorithm
• actual C++ code that works well on real computers
• e.g.: __gnu_parallel::sort

4

Independent operations,
opportunities for

parallelism

Caches,
registers,
ILP, AVX,
OpenMP,
CUDA …

We need new kinds of algorithms

• Some classical algorithms have opportunities for parallelism
• example: many “divide and conquer” algorithms

• However, often we need to design entirely new algorithms!

• Wrong question:
“how to implement this algorithm on a parallel computer?”

• Right question:
“how to design a parallel algorithm for this problem?”

5

Parallel algorithms: terminology

• “Processor”:
• any form of parallelism often is described as if we had p processors
• abstraction — shows what can be done independently in parallel
• practical realizations: superscalar execution, pipelining, CPU vector

lanes, CPU threads, GPU threads, multiple GPUs, computing cluster …

• “Work”: total number of operations by all processors

• “Depth”: longest sequential dependency chain
• how long does it take even if we had infinitely many processors

6

Sum

• Problem: calculate sum of X = (x0, x1, …, xn−1)

• Trivial sequential algorithm

• Recursive parallel algorithm sum(X):
• if n ≤ 2:
• use sequential algorithm

• if n > 2:
• split X in two halves A and B
• in parallel, calculate a = sum(A) and b = sum(B)
• return a + b

7

Some examples:

A = first half
B = second half

A = odd indexes
B = even indexes

8

2nd half1st half

oddeven

x0 x1 x2 x3 x4 x5 x6 x7 x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

9

x0 x1 x2 x3 x4 x5 x6 x7 x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 x4 x5 x6 x7

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

depth

depth

depthwork

work

Sum

• In theory we could parallelize sums as follows:
• O(n) processors, O(n) work, O(log n) depth

• In practice this shows that there is lots of potential for
parallelism, without doing much extra work
• do not try to implement the recursive algorithm directly, use it as

a source of ideas of how you could reorganize computation
• just use enough levels to fully utilize your hardware

• e.g.: 3 levels for OpenMP, 3 levels for SIMD, 2 levels for ILP?
• usually we don’t have n “processors” but only e.g. 256

10

x0 x1 x2 x3 x4 x5 x6 x7

+

+

+

+

+

+

+

Sum

• The same idea works for any
associative binary operation:
• sum
• product
• max
• min
• bitwise and, or, xor
• matrix multiplication …

11

x0 x1 x2 x3 x4 x5 x6 x7

+

+

+

+

+

+

+

What can be parallelized?

• Nobody knows yet!

• Efficient parallel algorithms exist for many problems

• Some evidence that some problems are very hard to parallelize
• some useful keywords for further study: complexity class NC,

P-complete problems, conjecture P ≠ NC

12

Next

• Part 6B: parallel prefix sum — a concrete example of
an efficient parallel algorithm

• Part 6C: pointer jumping — a useful algorithm technique for
parallel algorithms that handle linked data structures

13

