Programming Parallel
Computers

Jukka Suomela - Aalto University - ppc.cs.aalto.fi

Part 2B:

Vector operations

What can you do fast with one
machine-language instruction?

* 40 years ago: addition of 8-bit integers 111+ 22

20 years ago: multiplication of 11.11711 x 22.2222
floating-point numbers

» Today: multiplication of 171111 x 22.2222
vectors of floating-point numbers 33.3333 x 44.4444

55.9555 x 66.6666
/7.7777 x 88.8888

Modern CPUs are vector processors

 Even if your code is only doing scalar operations:
float a = ...
float b = ...
float ¢ = a * b;

* CPU will run your code using its vector unit:
 “store a to the first element of vector register 0”
 “store b to the first element of vector register 1”

* “multiply the first elements of vector registers 0 and 1°

Modern CPUs are vector processors

* Modern Intel CPUs have two kinds of registers:
« %rax, %rbx, ... 64-bit integers
* %ymmo, %ymm1, 256-bit vectors

« How compilers typically use these:

* integer registers: memory addresses, array indexing, loop counters,
integer arithmetic ...

« vector registers: floating point arithmetic

 But you can do much more with vector registers!

“Vector”: 4 x double or 8 x float

« Tloat (single-precision floating-point number): 32 bits
« double (double-precision floating-point number): 64 bits

» Vector registers: 256 bits
« enough space for 4 x double
« enough space for 8 x float
« enough space for 32 x byte

“Vector”: 4 x double or 8 x float

« Tloat (single-precision floating-point number): 32 bits
« double (double-precision floating-point number): 64 bits

» Vector registers: 256 bits
« enough space for 4 x double

« enough space for 8 x float
Jenough space for 32 x byte This text

fits 1n one
register!

Vector operations in CPU

 Example: vaddps %ymm@, %ymm1, %ymm2

* Behaves like this:

z[0] = x[0] + y[0];
z[1] = x[1] + y[1];
z[2] = x[2] + y[2];
z[3] = x[3] + y[3];
z[4] = x[4] + y[4];
z[5] = x[5] + y[5]; float x[8]
z[6] = x[6] + y[6]: float y[8]
z[7] = x[7] + y[7]; float z[8]

Vector operations 1n C++

« Hard way:
* use “intrinsic functions”
« code looks like this: z = _mm256_add_ps(x, vy);

« Easy way:
* use “vector types”
» code looks like this: z = x + vy;

Vector types

GCC syntax for saying that “float8_t" = vector of 8 x float:

typedef float float8_t
__attribute__ ((vector_size (8 * sizeof(float))));

Just copy & paste

it whenever you
need it...

Vector types

float8_t a, b, c;
a = ...
b = ...;
c =a+ b;

Similar behavior,
but much more

efficient code:
one vector addition

0

O 0O 0000606006009

float a[8],

QDI « D I «) U « b U « b N « b I « b I « b I
NO b wWN-_O

- e

b[8], c[8];

+ 4+ + + + + + +

O O OO OO0 T T
NOoaphwWN-_AO

10

Vector types

 You can refer to entire vectors — compiler will generate
efficient code in which you do element-wise operations:

x = (a+ b) * c;

 You can mix scalars and vectors:
X =3 *x a+ 2;

* You can also refer to individual vector elements if needed,
but don't expect this to generate efficient code:

x[@0] = 3 *x a[1] + 2;

11

Vector types

* You can imagine that vector types are a class or struct that
contains 8 floats

* happens to support convenient overloaded “+", “x”, etc. operations

* You can freely pass vectors around in function parameters,
return values, etc.

* they are typically kept in registers

* You can allocate small arrays of vectors in stack

12

Vector types

float8_t example(float8_t a, float8_t b) {
float8_t c[2];
c[@] = a + b;
c[1] = a - b;
float8_t d = c[0] * c[1];
return d;

13

float8_t example(float8_t a, float8_t b) {
float8_t c[2];
c[0] = a + b;
c[1] = a - b;
float8_t d = c[0] * c[1];
return d;

vaddps %ymml, %ymm0, %ymm?2
vsubps %ymml, %ymm0, %ymmO Efficient
vmulps %ymmo, %ymm?2, %ymmoO
ret

code!

14

Memory alignment

 Just one complication: care needed with memory allocation!

* Any pointerto float8_t has to be properly aligned
« memory address has to be a multiple of 32 bytes
* malloc, new, etc. do not guarantee that!

* All of these are seriously broken:
« float8_t* p = (float8_t*)malloc(n * sizeof(float8_t));
« float8_t* p = new float8_t[n];
« std: :vector<float8_t> p(n);
Program might crash

with 50% probability!

15

Memory alignment

« Always use posix_memalign for dynamic memory allocation
* instead of malloc, new, std: :vector, etc.

» See the course material for more details & examples

 our code templates also contain memory allocation functions
that you can directly use

 Remember that local variables, small arrays in stack, function
parameters, return values etc. do not need any special care

« compiler knows about their alignment requirements and does
the right job (and often keeps those in registers anyway)

16

