
Programming Parallel 
Computers
Jukka Suomela  ·  Aalto University  ·  ppc.cs.aalto.fi

Part 2B:
Vector operations



What can you do fast with one 
machine-language instruction?

• 40 years ago: addition of 8-bit integers

• 20 years ago: multiplication of
floating-point numbers

• Today: multiplication of
vectors of floating-point numbers

2

111 + 22

11.1111 × 22.2222

11.1111 × 22.2222
33.3333 × 44.4444
55.5555 × 66.6666
77.7777 × 88.8888



Modern CPUs are vector processors

• Even if your code is only doing scalar operations:
float a = ...
float b = ...
float c = a * b;

• CPU will run your code using its vector unit:
• “store a to the first element of vector register 0”
• “store b to the first element of vector register 1”
• “multiply the first elements of vector registers 0 and 1”

3



Modern CPUs are vector processors

• Modern Intel CPUs have two kinds of registers:
• %rax, %rbx, …: 64-bit integers
• %ymm0, %ymm1, …: 256-bit vectors

• How compilers typically use these:
• integer registers: memory addresses, array indexing, loop counters,

integer arithmetic …
• vector registers: floating point arithmetic

• But you can do much more with vector registers!

4



“Vector”: 4 × double or 8 × float

• float (single-precision floating-point number): 32 bits

• double (double-precision floating-point number): 64 bits

• Vector registers: 256 bits
• enough space for 4 × double
• enough space for 8 × float
• enough space for 32 × byte

5



“Vector”: 4 × double or 8 × float

• float (single-precision floating-point number): 32 bits

• double (double-precision floating-point number): 64 bits

• Vector registers: 256 bits
• enough space for 4 × double
• enough space for 8 × float
• enough space for 32 × byte

6

This text 
fits in one 
register!



Vector operations in CPU

• Example:  vaddps %ymm0, %ymm1, %ymm2

• Behaves like this:
z[0] = x[0] + y[0];
z[1] = x[1] + y[1];
z[2] = x[2] + y[2];
z[3] = x[3] + y[3];
z[4] = x[4] + y[4];
z[5] = x[5] + y[5];
z[6] = x[6] + y[6];
z[7] = x[7] + y[7];

7

float x[8] ≈ %ymm0
float y[8] ≈ %ymm1
float z[8] ≈ %ymm2



Vector operations in C++

• Hard way:
• use “intrinsic functions”
• code looks like this:  z = _mm256_add_ps(x, y);

• Easy way:
• use “vector types”
• code looks like this:  z = x + y;

8



Vector types

GCC syntax for saying that “float8_t” = vector of 8 × float:

typedef float float8_t
__attribute__ ((vector_size (8 * sizeof(float))));

9

Just copy & paste 
it whenever you 

need it…



Vector types

10

float8_t a, b, c;

a = ...;
b = ...;
c = a + b;

float a[8], b[8], c[8];

a = ...;
b = ...;
c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];
c[3] = a[3] + b[3];
c[4] = a[4] + b[4];
c[5] = a[5] + b[5];
c[6] = a[6] + b[6];
c[7] = a[7] + b[7];

≈
Similar behavior,
but much more 
efficient code:

one vector addition



Vector types

• You can refer to entire vectors — compiler will generate
efficient code in which you do element-wise operations:
x = (a + b) * c;

• You can mix scalars and vectors:
x = 3 * a + 2;

• You can also refer to individual vector elements if needed,
but don’t expect this to generate efficient code:
x[0] = 3 * a[1] + 2;

11



Vector types

• You can imagine that vector types are a class or struct that 
contains 8 floats
• happens to support convenient overloaded “+”, “*”, etc. operations

• You can freely pass vectors around in function parameters, 
return values, etc.
• they are typically kept in registers

• You can allocate small arrays of vectors in stack

12



Vector types

float8_t example(float8_t a, float8_t b) {
float8_t c[2];
c[0] = a + b;
c[1] = a - b;
float8_t d = c[0] * c[1];
return d;

}

13

Works fine!



float8_t example(float8_t a, float8_t b) {
float8_t c[2];
c[0] = a + b;
c[1] = a - b;
float8_t d = c[0] * c[1];
return d;

}

14

vaddps %ymm1, %ymm0, %ymm2
vsubps %ymm1, %ymm0, %ymm0
vmulps %ymm0, %ymm2, %ymm0
ret

Efficient
code!



Memory alignment

• Just one complication: care needed with memory allocation!

• Any pointer to  float8_t has to be properly aligned
• memory address has to be a multiple of 32 bytes
• malloc, new, etc. do not guarantee that!

• All of these are seriously broken:
• float8_t* p = (float8_t*)malloc(n * sizeof(float8_t));
• float8_t* p = new float8_t[n];
• std::vector<float8_t> p(n);

15

Program might crash 
with 50% probability!



Memory alignment

• Always use  posix_memalign for dynamic memory allocation
• instead of  malloc,  new,  std::vector,  etc.

• See the course material for more details & examples
• our code templates also contain memory allocation functions

that you can directly use

• Remember that local variables, small arrays in stack, function 
parameters, return values etc. do not need any special care
• compiler knows about their alignment requirements and does

the right job (and often keeps those in registers anyway)

16


