Programming Parallel
Computers

Jukka Suomela - Aalto University - ppc.cs.aalto.fi

Part 3C:

Reusing data 1in cache




Reading little vs. reading efficiently

* Previous part:
* how to organize code so that you read as little as possible
 read once to registers, use it many times
 accessing registers is free
» this should be always your plan A

* This part:
* how to make sure that you can read as fast as possible
* organize memory access so that you benefit from cache memory
 accessing cache is not as fast as registers
« worry about this when your plan A failed...



arithmetic R g

arithmetic B s

N
J

arithmetic B g

arithmetic R o

~

J

arithmetic R g

arithmetic B s

~N

J

arithmetic Bpg

arithmetic R g

~
J

CPU

main
memory




How do caches work?

* When your program reads anything that is in the main memory:
* CPU tries to get it from L1 cache
* if not there, try L2 cache

if not there, try L3 cache

if not there, get from main memory

CPU automatically stores it in caches if it was not there yet

makes space by throwing away some not-so-recently-used values




arithmetic R g

arithmetic B s

N
registers L1 L2 cache
P I
J

arithmetic Bpg

arithmetic R o

registers
<1KB

arithmetic R g

arithmetic B s

~

registers L1 L2 cache
P I

J

arithmetic Bpg

arithmetic R o

registers
<1KB

CPU

-
L1 L2 cache
32 KB 256 KB
J

-
L1 L2 cache
32 KB 256 KB
J

main
memory

32 GB




How do caches work?

» Smallest meaningful unit of data: cache line = 64 bytes
 data in caches is organized in cache lines
e data is transmitted between main memory and caches in cache lines
 you need just 1 byte — you will also get 63 other bytes around it
» you waste bandwidth if you don't take this into account

* |t makes sense to access e.g. consecutive alrray elements
« the first memory reference brings the whole cache line to caches
 the next memory references get data from cache



How to benefit from cache memory?

* You need to design the memory access pattern in your code
so that you benefit from cache memory as much as possible

* Most of your memory reads should refer to elements
that you have recently read

e or at least are in the same cache line as those
that you have recently read

« Some examples of what this might mean in practice...



(7))
=
P
D..m
S o
e
D

O r— AN M < LW O N

O r— ANMm<IT LW O~




NooabhowWwhN-—-O

01234567

NOoapb~wWwN-=O

NOoab~owhN-—-O

Input

elements




Nooabh,owWN-—-O

01234567

~

NOoapb~wWNN-—_O

NONoa b~ WN-—-O

Output value (3, j)
1s computed from

orange element1
and blue element




00000000




Or— AN M <

01234567

O O I~ O r— ANMS< LW O~

O r— QAN M O O N




01234567

O r— QAN M < 0O O N




00000000




00000000




Or— ANMIT LW O~ O r— ANMS<TLW O~

AR
%2

O r— ANMS<T LW O~

01234567




O QN M<

01234567

O O N O r— AN MST LW O~

AR
M@%

Or=ANM<T WO O~




O r—ANMmITLW O~ Or— ANM<T WO O NN




e f g h

a b c¢c d

— ANMO < WO O~

o p q r

k 1 m n

O c— AN M <<~ W O~




e f g h

o p q r

Or— ANM<T WO O~ Or— AN MIT LW O~
S—
J
+
~
© c
(] 1=
0 —
© X
O ANM<T WO O Or— AN MIT LW O~
S—
J
I
~
< o
(@2} (o
Y o
] (@]
© c
(] 1=
0 —
© X
O ANM<T WO O N Or— AN MIT W O~




Putting 1t
together
Baseline: 99 s

Final: 0.7 s
Factor-151 speedup

93% of theoretical
maximum

Billions of operations per second

200 A

150 A

100 A

50 A

Theoretical maximum

Theoretical maximum

VO V1 V2 V3 V4 V5 V6 V7

Single-core

VO V1 V2 V3 V4 V5 V6 V7

Multi-core

21



