
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 5A:
Warps, blocks, and shared memory

Warps and blocks

• Threads in GPUs are organized in two ways:
• warps (always 32 threads)
• blocks (you can choose the number of threads)

• Why do we need these concepts?
• warps: help the hardware
• blocks: help the programmer

2

What if there were no warps?

• Our GPU has 640 arithmetic units for doing scalar operations

• If we had only individual threads, you would need
640 schedulers that process instructions from individual
threads and move operands to the right arithmetic units

• By organizing threads in warps, we only need
20 schedulers that process instructions from complete warps
and move warp-wide operands to warp-wide arithmetic units

• Less space & energy used by control logic,
more space & energy left for useful work

3

What if there were no warps?

• Similar to CPUs & vector operations:
• make arithmetic units and registers wider by a factor of 8:

more processing power without adding much more control logic
• increase the number of cores by a factor of 8:

everything got 8 times more costly

4

Blocks and shared memory

• Blocks are there to help you!

• You can allocate a small amount of very fast
“shared memory” for each block
• “small amount” ≈ kilobytes per block
• “very fast” ≈ L1 cache

• All threads of a block see the same shared memory

• Threads of a block can use shared memory to communicate
with each other and coordinate their work

5

Blocks and shared memory

• Example: each block calculates a sum using many threads
• b threads per block
• allocate b words of shared memory per block
• split input in b parts
• thread i calculates a local sum in its own part and

writes it in element i in shared memory
• synchronization: wait all threads to finish writing
• thread 0 reads all local sums from shared memory

and calculates the grand total

6

Warps and blocks

• Warps:
• always 32 threads
• helps with hardware design:

lots of arithmetic power with a simpler control
• you will have to live with this even if it is inconvenient for you

• Blocks:
• you can choose the block size (e.g. 64 or 256 threads)
• threads of a block can easily and efficiently communicate

with each other using “shared memory”
• blocks are a useful feature that you can use

7

Using shared memory in CUDA

__global__ void mykernel() {
__shared__ float x[100];
···

}

8

One array
per block!

Same:
x[0] in thread 5 of block 10
x[0] in thread 6 of block 10

Different:
x[0] in block 10
x[0] in block 11

Using shared memory in CUDA

__global__ void mykernel() {
__shared__ float x[100];
···
__syncthreads();
···

}

9

A thread won’t continue
until all threads of the block

have reached this point

Using shared memory in CUDA

···

x[i] = a;

10

Write to my own slot

Using shared memory in CUDA

···

x[i] = a;

__syncthreads();

11

Write to my own slot

Wait for everyone to finish writing

Using shared memory in CUDA

···

x[i] = a;

__syncthreads();

b = x[0];

12

Write to my own slot

Wait for everyone to finish writing

Now safe to read from any slot

Using shared memory in CUDA

···

x[i] = a;

__syncthreads();

b = x[0];

__syncthreads();

13

Wait for everyone to finish reading

Write to my own slot

Wait for everyone to finish writing

Now safe to read from any slot

Using shared memory in CUDA

···

x[i] = a;

__syncthreads();

b = x[0];

__syncthreads();

x[i] = c;

···
14

Wait for everyone to finish reading

Now safe to write again

Write to my own slot

Wait for everyone to finish writing

Now safe to read from any slot

Shared memory is small

• 64 KB in total per SM (“streaming multiprocessor”)

• Example:
• you want to have 8 active blocks on each SM
• you can only allocate at most 8 KB of shared memory per block

15

Key elements of CUDA programs

• Allocating GPU memory,
moving data between CPU memory and GPU memory

• Creating blocks of threads, launching kernels

• Allocating shared memory for sharing data inside a block,
using __syncthreads to synchronize work

16

