Programming Parallel Computers

Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 5A: Warps, blocks, and shared memory

Warps and blocks

- Threads in GPUs are organized in two ways:
 - warps (always 32 threads)
 - blocks (you can choose the number of threads)
- Why do we need these concepts?
 - warps: help the *hardware*
 - blocks: help the programmer

What if there were no warps?

- Our GPU has 640 arithmetic units for doing scalar operations
- If we had only individual threads, you would need
 640 schedulers that process instructions from individual threads and move operands to the right arithmetic units
- By organizing threads in warps, we only need
 20 schedulers that process instructions from complete warps and move warp-wide operands to warp-wide arithmetic units
- Less space & energy used by control logic, more space & energy left for useful work

What if there were no warps?

- Similar to CPUs & vector operations:
 - make arithmetic units and registers wider by a factor of 8: more processing power without adding much more control logic
 - increase the number of cores by a factor of 8: everything got 8 times more costly

Blocks and shared memory

- Blocks are there to help you!
- You can allocate a small amount of very fast "shared memory" for each block
 - "small amount" ≈ kilobytes per block
 - "very fast" \approx L1 cache
- All threads of a block see the same shared memory
- Threads of a block can use shared memory to communicate with each other and coordinate their work

Blocks and shared memory

- Example: each block calculates a sum using many threads
 - *b* threads per block
 - allocate b words of shared memory per block
 - split input in *b* parts
 - thread *i* calculates a local sum in its own part and writes it in element *i* in shared memory
 - synchronization: wait all threads to finish writing
 - thread 0 reads all local sums from shared memory and calculates the grand total

Warps and blocks

• Warps:

- always 32 threads
- helps with hardware design: lots of arithmetic power with a simpler control
- you will have to live with this even if it is inconvenient for you

Blocks:

- you can choose the block size (e.g. 64 or 256 threads)
- threads of a block can easily and efficiently communicate with each other using "shared memory"
- blocks are a useful feature that you can use

Using shared memory in CUDA

__global__ void mykernel() { __<mark>shared__</mark> float x[100];

One array per block!

Different: x[0] in block 10 x[0] in block 11

Same: x[0] in thread 5 of block 10 x[0] in thread 6 of block 10

Using shared memory in CUDA

__global__ void mykernel() { __<mark>shared__</mark> float x[100];

__syncthreads();

A thread won't continue until all threads of the block have reached this point

Using shared memory in CUDA

Using shared memory in CUDA Write to my own slot x[i] = a; Wait for everyone to finish writing __syncthreads(); Now safe to read from any slot b = x[0];__syncthreads() Wait for everyone to finish reading

Using shared memory in CUDA Write to my own slot x[i] = a;Wait for everyone to finish writing __syncthreads(); Now safe to read from any slot b = x[0];__syncthreads(Wait for everyone to finish reading x[i] = c;Now safe to write again

Shared memory is small

- 64 KB in total per SM ("streaming multiprocessor")
- Example:
 - you want to have 8 active blocks on each SM
 - you can only allocate at most 8 KB of shared memory per block

Key elements of CUDA programs

- Allocating GPU memory,
 - moving data between CPU memory and GPU memory
- Creating *blocks of threads*, launching *kernels*
- Allocating shared memory for sharing data inside a block, using __syncthreads to synchronize work