
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 5B:
How does the GPU execute code?

What happens inside the GPU?

• The same general principles hold for a wide range
of different GPUs

• However, when we need some concrete numbers
to illustrate these ideas, we will use the following GPU:
• NVIDIA Quadro K2200
• “Maxwell” microarchitecture
• 5 × streaming multiprocessors (SM)

2

Key concepts that we need

• Kernel ≈ some instructions that we want to execute

• Blocks that consist of warps

• Warps that consist of 32 threads

• Shared memory

• Registers

3

GPU registers

• At most 255 registers per thread
• scalar registers, can hold 32-bit numbers

• When your kernel is compiled,
the compiler will decide how many registers are used
• for each kernel, the compiler stores some metadata, e.g.:

4

“To run this kernel,
we will need 96 registers per thread,
and 2 KB of shared memory per block”

Lots of data,
needs to be stored

somewhere!

__global__ void mykernel(...) {
···
float v[8][8];
···
for (int k = 0; k < n; ++k) {

float x[8];
float y[8];
···
x[ib] = ···;
y[jb] = ···;
···
v[ib][jb] = min(v[ib][jb], x[ib] + y[jb]);

}
···

}
5

Chapter 4, part V2
64 registers?

8 + 8 registers?

cuobjdump --dump-sass

···
FADD R79, R86.reuse, R79 ;
FADD R85, R86.reuse, R85 ;
FADD R89, R86, R89 ;
FMNMX R69, R88, R69, PT ;
FMNMX R67, R90, R67, PT ;
FMNMX R56, R75, R56, PT ;
FMNMX R53, R95, R53, PT ;
FMNMX R34, R87, R34, PT ;
FMNMX R26, R83, R26, PT ;
···

6

Uses 96 registers
(R0 … R95)

Key choices

• Fixed: 32 threads per warp

• We choose: how many threads per block
• at most 1024

• We choose: how much shared memory per block
• at most 48 KB

• Compiler chooses: how many registers per thread
• depends on our kernel code
• at most 255

7

What happens
when we launch a kernel?
• All blocks are put in a GPU-wide queue
• cheap, no resources allocated yet

8

Block 8
Block 7

Block 6
Block 5

Block 4
Block 3

Block 2
Block 1

Block 0

What happens
when we launch a kernel?
• All blocks are put in a GPU-wide queue
• cheap, no resources allocated yet

• 5 “streaming multiprocessors” (SM)

9

Block 8

SM 1

Block 7
Block 6

Block 5
Block 4

Block 3

SM 2

Block 2
Block 1

Block 0

What happens
when we launch a kernel?
• All blocks are put in a GPU-wide queue
• cheap, no resources allocated yet

• 5 “streaming multiprocessors” (SM)

• Whenever there is room in one SM:
• SM takes a block from the queue
• the block becomes active
• resources are allocated for the block

10

Block 8

Block 0

SM 1

Block 7
Block 6

Block 5
Block 4

Block 3

SM 2

Block 1 Block 2

What happens
when we launch a kernel?
• All blocks are put in a GPU-wide queue
• cheap, no resources allocated yet

• 5 “streaming multiprocessors” (SM)

• Whenever there is room in one SM:
• SM takes a block from the queue
• the block becomes active
• resources are allocated for the block
• the block is there until all threads

in the block finish running,
then resources are freed

11

Block 8

Block 0

SM 1

Block 7
Block 6

Block 5
Block 4

Block 3

SM 2

Block 2

Block 1

What happens when
SM starts to process a block?
• Block becomes active
• room for 32 active blocks per SM

• All warps of the block become active
• room for 64 active warps per SM

• Shared memory allocated for the block
• 64 KB shared memory available per SM

• Physical registers allocated for each thread
• 65536 physical 32-bit registers per SM

12

Blocks will
have to wait
in the queue

until all these
resources are

available!

What happens when
SM starts to process a block?
• Block becomes active
• room for 32 active blocks per SM

• All warps of the block become active
• room for 64 active warps per SM

• Shared memory allocated for the block
• 64 KB shared memory available per SM

• Physical registers allocated for each thread
• 65536 physical 32-bit registers per SM

13

64 active warps
× 32 threads/warp
× 5 SMs
= 10240 active threads

What happens when
SM starts to process a block?
• Block becomes active
• room for 32 active blocks per SM

• All warps of the block become active
• room for 64 active warps per SM

• Shared memory allocated for the block
• 64 KB shared memory available per SM

• Physical registers allocated for each thread
• 65536 physical 32-bit registers per SM

14

Limits parallelism
if blocks too small

What happens when
SM starts to process a block?
• Block becomes active
• room for 32 active blocks per SM

• All warps of the block become active
• room for 64 active warps per SM

• Shared memory allocated for the block
• 64 KB shared memory available per SM

• Physical registers allocated for each thread
• 65536 physical 32-bit registers per SM

15

64 warps
× 32 threads/warp
× 32 registers/thread
= 65536 registers

What happens when
SM starts to process a block?
• Block becomes active
• room for 32 active blocks per SM

• All warps of the block become active
• room for 64 active warps per SM

• Shared memory allocated for the block
• 64 KB shared memory available per SM

• Physical registers allocated for each thread
• 65536 physical 32-bit registers per SM

16

32 active blocks:
2 KB shared
memory per block

How does SM execute code
from active warps?

17

See the videos for an animation…

18

Keeping arithmetic units busy
(in theory)
• Lots of independent instructions:
• e.g. floating-point additions: throughput 4 warps per clock cycle
• 4 active warps per SM enough to keep all arithmetic units busy
• in each clock cycle there is something to do in each warp

• All instructions depend on previous instruction:
• e.g. floating-point addition: latency 6 clock cycles
• 6 · 4 = 24 active warps per SM enough to keep arithmetic units busy
• in each clock cycle there is a warp that is ready

19

Keeping arithmetic units busy
(in theory)
• Lots of independent instructions:
• e.g. floating-point additions: throughput 4 warps per clock cycle
• 4 active warps per SM enough to keep all arithmetic units busy
• in each clock cycle there is something to do in each warp

• All instructions depend on previous instruction:
• e.g. floating-point addition: latency 6 clock cycles
• 6 · 4 = 24 active warps per SM enough to keep arithmetic units busy
• in each clock cycle there is a warp that is ready

20

The real hardware is

a bit more complicated…

Keeping arithmetic units busy
(in practice)
• Lots of independent “+” instructions:
• 4 active warps per SM enough to keep arithmetic units ≥ 82% busy
• 8 active warps per SM enough to keep arithmetic units ≥ 96% busy

• Pairs of independent “+” instructions:
• 12 active warps per SM enough to keep arithmetic units ≥ 87% busy
• 16 active warps per SM enough to keep arithmetic units ≥ 97% busy

• All “+” instructions depend on previous instruction:
• 16 active warps per SM enough to keep arithmetic units ≥ 65% busy
• additional warps do not help to get beyond 65%

21

