
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 5C:
GPU programming — conclusions

What if the threads of a warp
try to do different things?
• How are these two claims compatible:
• all threads of a warp work in a synchronous manner
• kernel is arbitrary C++ code written from the perspective of a thread

• Then what happens if different threads of a warp try to do
different things?

• For example, what if different threads have different values of x:

• if (x < 123) { ... } else { ... }

• for (int i = 0; i < x; ++i) { ... }

2

What if the threads of a warp
try to do different things?
···

if (x < 123) {

···

} else {

···

}

···
3

True for threads 0…15

Entire warp takes these steps,
but threads 16…31 are disabled

Entire warp takes also these steps,
but threads 0…15 are disabled

What if the threads of a warp
try to do different things?
• You can write arbitrary C++ code in which different threads do

completely different things, it will be executed correctly!

• But it may be very inefficient, e.g.:
1. the warp follows what thread 0 does (threads 1, 2, 3, …, 31 disabled)
2. the warp follows what thread 1 does (threads 0, 2, 3, …, 31 disabled)
3. …

• You can lose in performance by a factor of 32 if you don’t keep
in mind that the entire warp is executed synchronously

4

Compilation process and
GPU assembly language
• C++ → PTX → SASS
• PTX: platform independent intermediate language
• SASS: what the GPU runs

• You can use cuobjdump --dump-sass to show
the SASS code

5

Block-wide vs. warp-wide
communication
• Communication between the threads of a block:
• allocate shared memory with __shared__
• read/write shared memory
• synchronize with __syncthreads()

• Communication between the threads of a warp:
• call e.g. functions __shfl_sync() or __shfl()
• see CUDA C++ Programming Guide

6

GPU programming recap

• You need to explicitly say what the GPU should run
• write a kernel, specify how many blocks of threads you want,

specify how many threads there are per block, launch the kernel

• All threads will run the same kernel code
• in the kernel you can use the thread index and block index

to decide what to do

• GPU-side code accesses only GPU memory
• you need to use CUDA functions to move data between

CPU memory and GPU memory

7

GPU programming recap

• Threads are organized in warps of 32 threads
• all threads of a warp are always synchronized
• pay attention to memory access pattern

• Threads are organized in blocks of x threads
• threads of a block can use shared memory for communication

• GPU executes instructions in a linear order
• only looks at the next instruction in each active warp
• good to have lots of active warps
• number of active warps limited by register & shared memory usage

8

What you learned earlier still applies

• It is always a good idea to try to minimize memory reads by
reusing data in registers

• The same idea works both on CPUs and on GPUs

• See the course material for examples!

9

