
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 6D:
Conclusions

Computers are massively parallel

• Huge amounts of computing power available
• CPUs: hundreds of billions of operations per second
• GPUs: even more

• All new performance comes from parallelism
• > factor 100 difference between sequential and parallel performance

• Memory is slow
• > factor 50 difference between memory bandwidth and arithmetic

throughput

2

Parallel computing resources

CPU

• Pipelined arithmetic units:
1 new operation per cycle

• Vector operations:
8 similar operations

• Lots of arithmetic units:
4 × 2 vector operations in
parallel e.g. for FMA

GPU

• Pipelined arithmetic units:
1 new operation per cycle

• “Warp” of “threads”:
32 similar operations

• Lots of arithmetic units:
5 × 4 warps executed in
parallel e.g. for FMA

3

Programmer’s view

CPU

• Instruction-level parallelism
important

• Everything else is sequential
unless explicitly parallelized
#pragma omp
float8_t

GPU

• Instruction-level parallelism
not so important

• The only primitive that we can
use is inherently parallel
f<<<blocks, threads>>>()

4

Key ideas

• Design algorithms so that there are lots of independent
operations
• needed for any kind of parallelism

• Preferably lots of similar independent operations
• needed for SIMD (vectors on CPUs)
• needed for SIMT (warps on GPUs)

• Try to do lots of arithmetic operations per memory access
• otherwise the CPU will be mostly idle, waiting for some data to process

5

What is happening to hardware

• Wider vector units
• Intel CPUs with AVX-512 already available

• GPU-like auxiliary processors
• Google’s “Tensor Processing Unit”:

special hardware for matrix multiplications

• Low-precision floating-point numbers
• NVIDIA’s “Tensor cores”:

4 × 4 matrix multiplication of 16-bit floats

6

What is happening to hardware

• Transactional memory
• you can use memory a bit like transactional databases:

• begin transaction
• read and write memory (without any coordination)
• try to commit
• rollback if conflicts

• some hardware support available in recent Intel CPUs

7

What next?

• Practical path:
• computer architecture, computer hardware, compilers,

programming languages, distributed computing, cloud computing,
computer networks, internet protocols, mobile computing …

• Theory path:
• algorithm design & analysis, computational complexity,

parallel algorithms, concurrency theory, formal verification & synthesis,
distributed algorithms …

8

