
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 2A:
Multicore parallelism · OpenMP

Three forms of parallelism

• Multicore parallelism:
• CPU has got multiple streams of instructions to process (“threads”)
• each core can do useful work

• Instruction-level parallelism:
• each CPU core processes its instruction stream as fast as possible
• all arithmetic units can do useful work in every clock cycle

• Vector operations:
• each instruction does multiple similar operations in parallel
• all “lanes” of arithmetic units do useful work

2

Three forms of parallelism

• Multicore parallelism:
• CPU has got multiple streams of instructions to process (“threads”)
• each core can do useful work

• Instruction-level parallelism:
• each CPU core processes its instruction stream as fast as possible
• all arithmetic units can do useful work in every clock cycle

• Vector operations:
• each instruction does multiple similar operations in parallel
• all “lanes” of arithmetic units do useful work

3

Week 1

Three forms of parallelism

• Multicore parallelism:
• CPU has got multiple streams of instructions to process (“threads”)
• each core can do useful work

• Instruction-level parallelism:
• each CPU core processes its instruction stream as fast as possible
• all arithmetic units can do useful work in every clock cycle

• Vector operations:
• each instruction does multiple similar operations in parallel
• all “lanes” of arithmetic units do useful work

4

Today

Today

How to achieve it?

• Multicore parallelism:
• we must create multiple threads — e.g. with OpenMP

• Instruction-level parallelism:
• we must have independent operations in the instruction stream
• CPU parallelizes them automatically whenever possible

• Vector operations:
• we must use vector instructions — e.g. with vector types in GCC

5

Different scales

• Multicore parallelism:
• very coarse-grained
• executing e.g. entire subroutines in parallel
• amount of work per independent unit:

e.g. 1 million multiplications

• Instruction-level parallelism:
• very fine-grained
• executing machine language instructions in parallel
• amount of work per independent unit:

e.g. 1 multiplication

6

Multicore & multithreading

• Assuming:
• we have a computer with a 4-core CPU
• we have a program that creates 4 threads
• no other program is active at the same time

• Then:
• the operating system will do the right thing
• each CPU core will run one thread
• resources fully utilized

• at least until some of the threads finish their work…

7

Multicore & multithreading

• More threads than cores?
• core 1 runs thread 1 for a short while
• operating system makes a context switch
• core 1 runs thread 2 for a short while …

• Fewer threads than cores?
• some cores are simply idle
• there is no way to use 4 cores if you run 1 program with 1 thread

8

Multicore & multithreading

• How to split long-running computation among multiple threads?

• Hard way: use low-level primitives and do everything manually
• pthreads
• std::thread …

• Easy way: use high-level parallelization tools that do almost
everything for you
• OpenMP
• Intel TBB …

9

Using OpenMP

10

OpenMP parallel for loop

for (int i = 0; i < 10; ++i) {
c(i);

}

11

c(0) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9)thread 0:

OpenMP parallel for loop

#pragma omp parallel for
for (int i = 0; i < 10; ++i) {

c(i);
}

12

c(0) c(1) c(2)thread 0:
thread 1:
thread 2:
thread 3:

c(3) c(4) c(5)

c(6) c(7)

c(8) c(9)

OpenMP parallel for loop

#pragma omp parallel for
for (int i = 0; i < 10; ++i) {

c(i);
}

13

c(0) c(1) c(2)thread 0:
thread 1:
thread 2:
thread 3:

c(3) c(4) c(5)

c(6) c(7)

c(8) c(9)

Threads might
do different

amounts of work

a();
#pragma omp parallel for
for (int i = 0; i < 10; ++i) {

c(i);
}
d();

14

c(0) c(1) c(2)thread 0:
thread 1:
thread 2:
thread 3:

c(3) c(4) c(5)

c(6) c(7)

c(8) c(9)

d()a()

Start & end
coordinated

d knows that
c(0), c(1), …, c(9)
have already
finished their
work

Loop scheduling

#pragma omp parallel for
• thread 0: iterations 0, 1, …, 9
• thread 1: iterations 10, 11, …, 19

#pragma omp parallel for schedule(static,1)
• thread 0: iterations 0, 4, 8, …, 36
• thread 1: iterations 1, 5, 9, …, 37

#pragma omp parallel for schedule(dynamic,1)
• iterations 0, 1, 2, …, 39 are waiting in a queue
• whenever a thread is available, process the next iteration

15

Example:
4 threads

40 iterations

8

2
1

9

4
5

8

2
1

9

4
5

2 + 5 = 7

7

2
1

3

4
5

r (output):d (input):

1 00

2

1

2

0 1

2

Sample application:
cheapest 2-hop path

16

d[] = { 0, 8, 2,
1, 0, 9,
4, 5, 0 }

r[] = { 0, 7, 2,
1, 0, 3,
4, 5, 0 }

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

17

Each iteration
is independent
of each other,
could be done
in parallel

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

18

Each iteration
is independent
of each other,
could be done
in parallel

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

19

That’s all!
It works!

It works!
Multithreading with
OpenMP helped by a
factor of 3.6

Overall 16 times faster
than our starting point

20

Careful with OpenMP!

21

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

22

Private
variables

(one for each
thread)

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

23

Shared
read-only
variables

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

24

Shared
read-only
variables

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

25

Each thread
writes different

elements, no
thread reads

them

e.g. n = 10:
• i = 0: r[0] ... r[9]
• i = 1: r[10] ... r[19]
• i = 2: r[20] ... r[29]

. . .
• i = 9: r[90] ... r[99]

Rules

• Private data:
• OK: everything

• Shared data:
• OK: multiple threads read, nobody writes
• OK: only one thread touches it
• bad: one thread reads, another writes
• bad: multiple threads write

26

“Data race”

for (int i = 0; i < 10; ++i) {
x[i + 1] = f(x[i]);

}

for (int i = 0; i < 10; ++i) {
y[0] = f(x[i]);

}

#pragma omp parallel for
for (int i = 0; i < 10; ++i) {

y[i] = f(x[i]);
}

27

Cannot
parallelize

Cannot
parallelize

OK

