
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 2C:
How to benefit from vector operations?

How to use vector operations?

With a normal scalar
hammer, it does not
matter much where
your nails are

2

I can do this!

How to use vector operations?

With a normal scalar
hammer, it does not
matter much where
your nails are

One by one!

How to use vector operations?

With a normal scalar
hammer, it does not
matter much where
your nails are

One by one!

How to use vector operations?

With a normal scalar
hammer, it does not
matter much where
your nails are

One by one!

How to use vector operations?

With a normal scalar
hammer, it does not
matter much where
your nails are

One by one!

How to use vector operations?

With a normal scalar
hammer, it does not
matter much where
your nails are

But can I do
this faster?

How to use vector operations?

Then you get a brand-new
vector hammer!

8

4 times more
throughput!

How to use vector operations?

But it does not
seem to make
any sense to
use it in your
project?

9

???

How to use vector operations?

Redesign your
project keeping in
mind that you are
wielding a vector
hammer!

10

···

How to use vector operations?

You will often have
extra steps in your
program to rearrange
data so that inner
loops can do lots of
useful work with
vector operations

11

How to use vector operations?

Form follows function

Sometimes you will
need to re-think the
entire data layout

Plenty of room
for creativity!

12

hammer

How to use vector operations?

• Typical idea:
• preprocess your data
• “pack” individual data elements to vectors
• add padding if input size not multiple of 4, 8, etc.
• do vector operations
• “unpack” results from vectors
• if needed, do some post-processing to turn vector results

into normal results

• Make sure you do enough arithmetic operations so that
all the extra work is worth it!

13

How to use vector operations?

• Packing data, some examples:
• vector = multiple elements from the same row of input
• vector = one element from each row of input
• vector = (R, G, B) triple in image processing
• vector = one sample from each input channel in audio processing
• vector = 256 pixels of a monochromatic image
• vector = 32 characters of text

• Make sure you are mostly doing similar operations for each
vector element
• e.g. elementwise addition, elementwise multiplication

14

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = t[n*j + k];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

15

No parallelism,
scalar operations

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v0 = infinity;
float v1 = infinity;
for (int k = 0; k < n/2; ++k) {

float x0 = d[n*i + 2*k];
float x1 = d[n*i + 2*k + 1];
float y0 = t[n*j + 2*k];
float y1 = t[n*j + 2*k + 1];
float z0 = x0 + y0;
float z1 = x1 + y1;
v0 = min(v0, z0);
v1 = min(v1, z1);

}
r[n*i + j] = min(v0, v1);

}
}

16

Groups of
2 similar

independent
operations

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v0 = infinity;
···
float v7 = infinity;
for (int k = 0; k < n/8; ++k) {

float x0 = d[n*i + 8*k];
···
float x7 = d[n*i + 8*k + 7];
float y0 = t[n*j + 8*k];
···
float y7 = t[n*j + 8*k + 7];
float z0 = x0 + y0;
···
float z7 = x7 + y7;
v0 = min(v0, z0);
···
v7 = min(v7, z7);

}
r[n*i + j] = min(v0, v1, ···, v7);

}
}

17

Groups of
8 similar

independent
operations

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float8_t vv = f8infty;
for (int k = 0; k < n/8; ++k) {

float8_t vx = vd[n/8*i + k];
float8_t vy = vt[n/8*j + k];
float8_t vz = vx + vy;
vv = min8(vv, vz);

}
r[n*i + j] = hmin8(vv);

}
}

18

1 vector
operation

8 scalar
operations

Vectorization
V2: instruction-level
parallelism

V3: vectorization

Running time improved
from 99 s to 4 s

19

Data reuse will be necessary

• Performance of a typical 4-core CPU:
• could do 64 floating-point additions per clock cycle
• main memory bandwidth: can fetch enough data for

≈ 1.25 floating-point additions per clock cycle
• we can only afford to fetch 2% of our input from main memory!

• Lots of data reuse needed:
• reusing what you have got from main memory to caches
• reusing what you have got from caches to registers

• More about this next week!

20

