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Part 2C:
How to benefit from vector operations?



How to use vector operations?

With a normal scalar 
hammer, it does not 
matter much where
your nails are
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I can do this!
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How to use vector operations?

With a normal scalar 
hammer, it does not 
matter much where
your nails are

But can I do 
this faster?



How to use vector operations?

Then you get a brand-new
vector hammer!
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4 times more 
throughput!



How to use vector operations?

But it does not
seem to make
any sense to
use it in your
project?
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???



How to use vector operations?

Redesign your 
project keeping in 
mind that you are 
wielding a vector 
hammer!
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···



How to use vector operations?

You will often have 
extra steps in your 
program to rearrange
data so that inner 
loops can do lots of 
useful work with 
vector operations
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How to use vector operations?

Form follows function

Sometimes you will 
need to re-think the 
entire data layout

Plenty of room
for creativity!
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hammer



How to use vector operations?

• Typical idea:
• preprocess your data
• “pack” individual data elements to vectors
• add padding if input size not multiple of 4, 8, etc.
• do vector operations
• “unpack” results from vectors
• if needed, do some post-processing to turn vector results

into normal results

• Make sure you do enough arithmetic operations so that
all the extra work is worth it!
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How to use vector operations?

• Packing data, some examples:
• vector = multiple elements from the same row of input
• vector = one element from each row of input
• vector = (R, G, B) triple in image processing
• vector = one sample from each input channel in audio processing
• vector = 256 pixels of a monochromatic image
• vector = 32 characters of text

• Make sure you are mostly doing similar operations for each 
vector element
• e.g. elementwise addition, elementwise multiplication
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for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = t[n*j + k];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}
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No parallelism,
scalar operations



for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v0 = infinity;
float v1 = infinity;
for (int k = 0; k < n/2; ++k) {

float x0 = d[n*i + 2*k];
float x1 = d[n*i + 2*k + 1];
float y0 = t[n*j + 2*k];
float y1 = t[n*j + 2*k + 1];
float z0 = x0 + y0;
float z1 = x1 + y1;
v0 = min(v0, z0);
v1 = min(v1, z1);

}
r[n*i + j] = min(v0, v1);

}
}
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Groups of
2 similar 

independent 
operations



for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float v0 = infinity;
···
float v7 = infinity;
for (int k = 0; k < n/8; ++k) {

float x0 = d[n*i + 8*k];
···
float x7 = d[n*i + 8*k + 7];
float y0 = t[n*j + 8*k]; 
···
float y7 = t[n*j + 8*k + 7];
float z0 = x0 + y0; 
···
float z7 = x7 + y7;
v0 = min(v0, z0); 
···
v7 = min(v7, z7);

}
r[n*i + j] = min(v0, v1, ···, v7);

}
}
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Groups of
8 similar 

independent 
operations



for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

float8_t vv = f8infty;
for (int k = 0; k < n/8; ++k) {

float8_t vx = vd[n/8*i + k];
float8_t vy = vt[n/8*j + k];
float8_t vz = vx + vy;
vv = min8(vv, vz);

}
r[n*i + j] = hmin8(vv);

}
}
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1 vector 
operation

8 scalar 
operations



Vectorization
V2: instruction-level 
parallelism

V3: vectorization

Running time improved 
from 99 s to 4 s
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Data reuse will be necessary

• Performance of a typical 4-core CPU:
• could do 64 floating-point additions per clock cycle
• main memory bandwidth: can fetch enough data for

≈ 1.25 floating-point additions per clock cycle
• we can only afford to fetch 2% of our input from main memory!

• Lots of data reuse needed:
• reusing what you have got from main memory to caches
• reusing what you have got from caches to registers

• More about this next week!
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