Part 3A:
All three forms of parallelism in action
Parallel computing resources

- **Multicore**: factor 4
 - 4 cores, each of them can run independent threads

- **Superscalar**: factor 2
 - each core can initiate 2 multiplications per clock cycle

- **Pipelining**: factor 4
 - no need to wait for operations to finish before starting a new one

- **Vectorization**: factor 8
 - each multiplication can process 8-wide vectors

Intel Core i5-6500
single-precision floating-point multiplication
Parallel computing resources

- **Multicore**: factor 4
 - 4 cores, each of them can run independent threads

- **Superscalar**: factor 2
 - each core can initiate 2 multiplications per clock cycle

- **Pipelining**: factor 4
 - no need to wait for operations to finish before starting a new one

- **Vectorization**: factor 8
 - each multiplication can process 8-wide vectors

OpenMP (part 2A)
Parallel computing resources

- **Multicore:** factor 4
 - 4 cores, each of them can run independent threads

- **Superscalar:** factor 2
 - each core can initiate 2 multiplications per clock cycle

- **Pipelining:** factor 4
 - no need to wait for operations to finish before starting a new one

- **Vectorization:** factor 8
 - each multiplication can process 8-wide vectors
Parallel computing resources

- **Multicore**: factor 4
 - 4 cores, each of them can run independent threads

- **Superscalar**: factor 2
 - Each core can initiate 2 multiplications per clock cycle

- **Pipelining**: factor 4
 - No need to wait for operations to finish before starting a new one

- **Vectorization**: factor 8
 - Each multiplication can process 8-wide vectors
OpenMP parallel for loop

#pragma omp parallel for
for (int i = 0; i < 10; ++i) {
 c(i);
}

thread 0: c(0) c(1) c(2)
thread 1: c(3) c(4) c(5)
thread 2: c(6) c(7)
thread 3: c(8) c(9)
Instruction-level parallelism

Bad: dependent

a1 *= a0;
a2 *= a1;
a3 *= a2;
a4 *= a3;
a5 *= a4;

Good: independent

b1 *= a1;
b2 *= a2;
b3 *= a3;
b4 *= a4;
b5 *= a5;
Vector types

float8_t a, b, c;

a = ...;
b = ...;
c = a + b;

float a[8], b[8], c[8];

a = ...;
b = ...;
c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
Is this enough?
Example

• “Mandelbrot iteration”:
 • \(c = \text{input}\)
 • \(x = 0\)
 • repeat \(N\) times: \(x = x \times x + c\)
 • result = \(x\)

\[c = 0.2:\]
\[
\begin{align*}
x &= 0.000^2 + 0.2 = 0.200 \\
x &= 0.200^2 + 0.2 = 0.240 \\
x &\approx 0.240^2 + 0.2 \approx 0.258 \\
x &\approx 0.258^2 + 0.2 \approx 0.266 \\
x &\approx 0.266^2 + 0.2 \approx 0.271
\end{align*}
\]

\[N = 5\]

\[c = 0.3:\]
\[
\begin{align*}
x &= 0.000^2 + 0.3 = 0.300 \\
x &= 0.300^2 + 0.3 = 0.390 \\
x &\approx 0.390^2 + 0.3 \approx 0.452 \\
x &\approx 0.452^2 + 0.3 \approx 0.504 \\
x &\approx 0.504^2 + 0.3 \approx 0.554
\end{align*}
\]
Example

• “Mandelbrot iteration” for 512 values, for a very large N:
 • $c = \text{input}[i]$
 • $x = 0$
 • \textit{repeat N times}: $x = x \times x + c$
 • $\text{result}[i] = x$

• Calculation of $\text{result}[0]$:
 • very long dependency chain, cannot parallelize

• Calculation of $\text{result}[0]$ and $\text{result}[1]$:
 • \textit{independent of each other!}
for (int i = 0; i < 512; ++i) {

 float x = 0.0;
 float c = input[i];

 for (long long n = 0; n < N; ++n) {

 x = x * x + c;

 }

 result[i] = x;
}

Naive sequential version
#pragma omp parallel for
for (int i = 0; i < 512; ++i) {
 float x = 0.0;
 float c = input[i];

 for (long long n = 0; n < N; ++n) {
 x = x * x + c;
 }

 result[i] = x;
}
#pragma omp parallel for
for (int i = 0; i < 64; ++i) {
 float c[8], x[8];
 for (int j = 0; j < 8; ++j) {
 x[j] = 0.0; c[j] = input[i][j];
 }
 for (long long n = 0; n < N; ++n) {
 for (int j = 0; j < 8; ++j) {
 x[j] = x[j] * x[j] + c[j];
 }
 }
 for (int j = 0; j < 8; ++j) {
 result[i][j] = x[j];
 }
}
#pragma omp parallel for
for (int i = 0; i < 8; ++i) {
 float8_t c[8], x[8];
 for (int j = 0; j < 8; ++j) {
 x[j] = float8_0; c[j] = input[i][j];
 }
 for (long long n = 0; n < N; ++n) {
 for (int j = 0; j < 8; ++j) {
 x[j] = x[j] * x[j] + c[j];
 }
 }
 for (int j = 0; j < 8; ++j) {
 result[i][j] = x[j];
 }
}
#pragma omp parallel for
for (int i = 0; i < 8; ++i) {
 float8_t c[8], x[8];
 for (int j = 0; j < 8; ++j) {
 x[j] = float8_0; c[j] = input[i][j];
 }
 for (long long n = 0; n < N; ++n) {
 for (int j = 0; j < 8; ++j) {
 x[j] = x[j] * x[j] + c[j];
 }
 }
 for (int j = 0; j < 8; ++j) {
 result[i][j] = x[j];
 }
}

Using 4 threads evenly

Plenty of room for instruction-level parallelism here

8-wide vector operations

"input" and "result" are here 8×8×8 arrays
Performance?

• $N = 1$ billion
 • we do 1024 billion arithmetic operations
 • running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds

• Got: 420 billion single-precision arithmetic operations / second
Performance!

- $N = 1$ billion
 - we do 1024 billion arithmetic operations
 - running time on 3.3 GHz 4-core Skylake CPU: 2.44 seconds

- Got: 420 billion single-precision arithmetic operations / second

- Theoretical maximum for this CPU: ≈ 422 billion / second

Yes!
Cheating?

- Tiny input, tiny output
- Everything in inner loops fits in CPU registers

No memory accesses in inner loops

- It would be much slower if we had any memory accesses in the performance-critical parts
- What to do if you must read some input in your inner loops?

CPUs are also very good at this kind of operations

- key operation: FMA (fused multiply and add)
- single instruction for \(d = a \times b + c \)