
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 4A:
GPU programming

GPU — graphics processing unit

• All modern computers have at least two processors:
• CPU: what we have been using so far
• GPU: lots of more computing power available and we can use it, too!

• CPU in our classroom computers [Intel Xeon E3-1230v5, “Skylake”]:
• 460 billion single-precision floating-point operations / second
• 230 billion double-precision floating-point operations / second

• GPU in our classroom computers [NVIDIA Quadro K2200, “Maxwell”]:
• 1400 billion single-precision floating-point operations / second
• 45 billion double-precision floating-point operations / second

2

Common feature: lots of wide,
pipelined arithmetic units
CPU

• Pipelined arithmetic units:
1 new operation per cycle

• Vector operations:
8 similar operations

• Lots of arithmetic units:
4 × 2 vector operations in
parallel e.g. for FMA

GPU

• Pipelined arithmetic units:
1 new operation per cycle

• “Warp” of “threads”:
32 similar operations

• Lots of arithmetic units:
5 × 4 warps executed in
parallel e.g. for FMA

3

Different tradeoffs between
parallelism and clock frequency
CPU

64 single-precision arithmetic
operations per cycle

3.4–3.8 GHz

FMA = 2 operations

460 billion arithmetic
operations per second

GPU

640 single-precision arithmetic
operations per cycle

1.0–1.1 GHz

FMA = 2 operations

1400 billion arithmetic
operations per second

4

Differences in programming models

CPU

• “SIMD” — single instruction,
multiple data

• One thread per core

GPU

• “SIMT” — single instruction,
multiple threads

• Very many threads
• threads organized in “blocks”
• blocks consist of “warps”
• warp = 32 threads

always works together

5

Differences in programming models

CPU

• “SIMD” — single instruction,
multiple data

• One thread per core
• each thread refers to

vector registers
• each thread performs

vector operations

GPU

• “SIMT” — single instruction,
multiple threads

• Very many threads
• each thread refers to

scalar registers
• each thread performs

scalar operations

6

Differences in programming models

CPU

• “SIMD” — single instruction,
multiple data

• One thread says e.g.:
• compute vector sum

z[i] = x[i] + y[i]
for all i = 0…7

GPU

• “SIMT” — single instruction,
multiple threads

• All threads of a warp say e.g.:
• compute scalar sum

z = x + y

7

32 similar
operations
in parallel

8 similar
operations
in parallel

Differences in programming models

CPU

• “SIMD” — single instruction,
multiple data

• One thread says e.g.:
• read one vector from memory

and store it in vector variable x
• can read 8 scalars in one step,

have to be in consecutive
memory locations

GPU

• “SIMT” — single instruction,
multiple threads

• All threads of a warp say e.g.:
• read one scalar from memory

and store it in scalar variable x
• can read 32 scalars in one step,

do not need to be consecutive
memory locations

8

Differences in programming models

CPU

• “SIMD” — single instruction,
multiple data

• Some SIMT solutions are
hard to implement here

GPU

• “SIMT” — single instruction,
multiple thread

• Any SIMD solution easy to
implement here (?)

9

Forms of parallelism

CPU

• Threads

• Vector operations

GPU

• Threads — lots of them!

• Vector operations

10

Forms of parallelism

CPU

• Threads

• Vector operations

• Instruction-level parallelism

GPU

• Threads — lots of them!

• Vector operations

• Instruction-level parallelism??

11

How the hardware tries to keep
pipelines busy
CPU

• Looks at the instruction
stream far into the future
• tries to find some instruction

that is ready for execution
• instruction-level parallelism

important
• small number of threads

enough

GPU

• Only looks at the first
instruction of each warp
• tries to find some warp that is

ready for execution
• instruction-level parallelism

not that important
• large number of warps needed

12

Forms of parallelism

CPU

• Threads

• Vector operations

• Instruction-level parallelism

GPU

• Threads — lots of them!

• Vector operations

• Instruction-level parallelism

13

Different history,
different hardware design
CPU

• Tries to run old sequential
code reasonably well

• Lots of complicated
hardware to support that
• out-of-order execution
• high clock frequency
• many layers of cache

GPU

• Does not care anything about
running old sequential code

• Simpler hardware
• transistors used for arithmetic,

not for control logic
• easier to add more parallel

units than increase clock speed

14

Hardware overview

15

CPU

main
memory

GPU

GPU
memory

