Part 4C: Memory access patterns in CUDA programs
Sample application: cheapest 2-hop path

d (input):

\[
d[] = \{ 0, 8, 2, 1, 0, 9, 4, 5, 0 \}
\]

r (output):

\[
r[] = \{ 0, 7, 2, 1, 0, 3, 4, 5, 0 \}
\]
void step(float* r, const float* d, int n) {
 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 float v = infinity;
 for (int k = 0; k < n; ++k) {
 float x = d[n*i + k];
 float y = d[n*k + j];
 float z = x + y;
 v = min(v, z);
 }
 r[n*i + j] = v;
 }
 }
}
Splitting work

• Work to do:
 • need to compute $n \times n$ results
 • computing one result takes n steps

• How do we split this in blocks and threads?

• Natural idea:
 • one thread computes one result
 • one block computes $b \times b$ results, for some suitable b
 • if we choose e.g. $b = 16$, then a block consists of 8 warps
Splitting work

• Example: input dimensions are 1600 x 1600:
 • we want to create **100 x 100 blocks**
 • each block consists of **16 x 16 threads**

• Create 10 000 blocks with 256 threads:
 • blocks numbered **0 ... 9999**
 • threads numbered **0 ... 255**

• Convert block & thread index to \((i, j)\) pair:
 • thread number 123 in block number 4567 computes the result for \(i = ???\) and \(j = ???\)
Splitting work

• Example: input dimensions are 1600 x 1600:
 • we want to create **100 x 100 blocks**
 • each block consists of **16 x 16 threads**

• Create 10 000 blocks with 256 threads:
 • blocks numbered **0 ... 9999**
 • threads numbered **0 ... 255**

• Convert block & thread index to \((i, j)\) pair:
 • thread number **123 = 7 \cdot 16 + 11** in block number **4567 = 45 \cdot 100 + 67**
 computes the result for \(i = 67 \cdot 16 + 11\) and \(j = 45 \cdot 16 + 7\)
Splitting work: using 2D indexes

• Example: input dimensions are 1600 x 1600:
 • we want to create 100 x 100 blocks
 • each block consists of 16 x 16 threads

• Create 10 000 blocks with 256 threads using 2D indexes:
 • blocks numbered (0, 0) ... (99, 99)
 • threads numbered (0, 0) ... (15, 15)

• Convert block & thread coordinates to (i, j) pair:
 • thread number (11, 7) in block number (67, 45)
 computes the result for \(i = 67 \cdot 16 + 11\) and \(j = 45 \cdot 16 + 7\)
Splitting work: rounding

• Example: input dimensions are 1601 x 1601:
 • we want to create **101 x 101 blocks**
 • each block consists of **16 x 16 threads**

• Create 10 000 blocks with 256 threads using 2D indexes:
 • blocks numbered (0, 0) ... (100, 100)
 • threads numbered (0, 0) ... (15, 15)

• There will be some threads with \(i \geq 1601 \) and/or \(j \geq 1601 \), they will do nothing
__global__ void mykernel(float* r, const float* d, int n) {
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int j = threadIdx.y + blockIdx.y * blockDim.y;
 if (i >= n || j >= n)
 return;
 float v = HUGE_VALF;
 for (int k = 0; k < n; ++k) {
 float x = d[n*i + k];
 float y = d[n*k + j];
 float z = x + y;
 v = min(v, z);
 }
 r[n*i + j] = v;
}

What if n is not a multiple of 16

blockDim.x = 16
blockDim.y = 16

x + y = z

i

...

k

...

j
float* dGPU = NULL;
cudaMalloc((void**)&dGPU, n * n * sizeof(float));
float* rGPU = NULL;
cudaMalloc((void**)&rGPU, n * n * sizeof(float));
cudaMemcpy(dGPU, d, n * n * sizeof(float), cudaMemcpyHostToDevice);

dim3 dimBlock(16, 16);
dim3 dimGrid(divup(n, dimBlock.x), divup(n, dimBlock.y));
mykernel<<<dimGrid, dimBlock>>>(rGPU, dGPU, n);

cudaMemcpy(r, rGPU, n * n * sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(dGPU); cudaFree(rGPU);
Performance

• Test input: $n = 6300$

• Maari computers:
 • baseline CPU solution: 397 s
 • best CPU solution: 2.3 s
 • current GPU solution: 42 s

• What is the bottleneck?
Memory

• A key challenge in CPU code:
 getting data fast enough from the CPU memory

• A key challenge in GPU code:
 getting data fast enough from the GPU memory
Memory access pattern

• Blocks are divided in warps
 • warp = 32 threads

• *Entire warp executes synchronously*

• If one thread reads some memory, all threads of the warp read some memory
warp of threads:

GPU memory:
Memory access pattern

- One memory read in kernel: *entire warp of threads reads memory simultaneously*
- Threads access small continuous parts of memory: need to load few cache lines → **good**
- Threads access 32 different locations far from each other: need to load many cache lines → **bad**
First warp:

thread 0: \(i = 0, j = 0 \)
thread 1: \(i = 1, j = 0 \)
thread 2: \(i = 2, j = 0 \)
thread 3: \(i = 3, j = 0 \)

... thread 31: \(i = 15, j = 1 \)

Pay attention to this index!

```c
int i = threadIdx.x + ...  
int j = threadIdx.y + ...  
for (... ++k) {
    float x = d[n*i + k];
    float y = d[n*k + j];
    ...
}
```
First warp, first iteration:

threads 0 & 16: read \textbf{d[0]}
threads 1 & 17: read \textbf{d[1000]}
threads 2 & 18: read \textbf{d[2000]}
threads 3 & 19: read \textbf{d[3000]}

\begin{verbatim}
int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {
 float x = d[n*i + k];
 float y = d[n*k + j];
 ...
}
\end{verbatim}
First warp, first iteration:

```c
int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {
    float x = d[n*i + k];
    float y = d[n*k + j];
    ...
}
```

Bad

threads 0 & 16: read `d[0]`
threads 1 & 17: read `d[1000]`
threads 2 & 18: read `d[2000]`
threads 3 & 19: read `d[3000]`
...

Good

threads 0–15: read `d[0]`
threads 16–31: read `d[1]`
First warp, second iteration:

threads 0 & 16: read \(d[1]\)
threads 1 & 17: read \(d[1001]\)
threads 2 & 18: read \(d[2001]\)
threads 3 & 19: read \(d[3001]\)
...

\[
\begin{align*}
\text{int } i &= \text{threadIdx.x} + \ldots \\
\text{int } j &= \text{threadIdx.y} + \ldots \\
\text{for } (\ldots + \text{k}) \{ \\
\quad \text{float } x &= \text{d[n*i + k]} \\
\quad \text{float } y &= \text{d[n*k + j]} \\
\quad \ldots
\}
\end{align*}
\]

threads 0–15: read \(d[1000]\)
threads 16–31: read \(d[1001]\)
First warp, third iteration:

threads 0 & 16: read \(d[2]\)
threads 1 & 17: read \(d[1002]\)
threads 2 & 18: read \(d[2002]\)
threads 3 & 19: read \(d[3002]\)
...

Int i = threadIdx.x + ...
Int j = threadIdx.y + ...

For (...) ++k) {

 float x = d[n*i + k];
 float y = d[n*k + j];
 ...
}

Bad

Good

threads 0–15: read \(d[2000]\)
threads 16–31: read \(d[2001]\)
int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {
 float x = d[n*i + k];
 float y = d[n*k + j];
 float x = d[n*j + k];
 float y = d[n*k + i];
...
}

r[n*i + j] = v;
r[n*j + i] = v;

Exchange the roles of i and j
First warp, first iteration:

\[
\begin{align*}
\text{int } & i = \text{threadIdx.x} + \ldots \\
\text{int } & j = \text{threadIdx.y} + \ldots \\
\text{for } & (\ldots \text{ ++k) } \\
& \quad \text{float } x = d[n \times j + k] \\
& \quad \text{float } y = d[n \times k + i] \\
& \quad \ldots
\end{align*}
\]
First warp, first iteration:

```c
int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {
    float x = d[n*j + k];
    float y = d[n*k + i];
    ...
}
```

threads 0–15: read `d[0]`
threads 16–31: read `d[1000]`
threads 0 & 16: read `d[0]`
threads 1 & 17: read `d[1]`
threads 2 & 18: read `d[2]`
···
First warp, second iteration:

```c
int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {
    float x = d[n*j + k];
    float y = d[n*k + i];
    ...
}
```

- threads 0–15: read `d[1]`
- threads 16–31: read `d[1001]`
- threads 0 & 16: read `d[1000]`
- threads 1 & 17: read `d[1001]`
- threads 2 & 18: read `d[1002]`

Good

Good
```c
int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (...) ++k) {
  float x = d[n*j + k];
  float y = d[n*k + i];
  ...
}
```

First warp, third iteration:

- threads 0–15: read \(d[2]\)
- threads 16–31: read \(d[1002]\)
- threads 0 & 16: read \(d[2000]\)
- threads 1 & 17: read \(d[2001]\)
- threads 2 & 18: read \(d[2002]\)
- ...
Performance

• **V0**: baseline — 42 s

• **V1**: better memory access pattern — 8 s

• But we can do much better by applying familiar ideas:
 • *reuse data in registers*
 • *reuse data in “cache”* (here: shared memory)
Performance

V0: baseline
V1: memory access
V2: registers
V3: shared memory