
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 4C:
Memory access patterns in CUDA programs

8

2
1

9

4
5

8

2
1

9

4
5

2 + 5 = 7

7

2
1

3

4
5

r (output):d (input):

1 00

2

1

2

0 1

2

Sample application:
cheapest 2-hop path

2

d[] = { 0, 8, 2,
1, 0, 9,
4, 5, 0 }

r[] = { 0, 7, 2,
1, 0, 3,
4, 5, 0 }

void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

} 3

x y

x + y = z

i j

···

k

···

Splitting work

• Work to do:
• need to compute n × n results
• computing one result takes n steps

• How do we split this in blocks and threads?

• Natural idea:
• one thread computes one result
• one block computes b × b results, for some suitable b
• if we choose e.g. b = 16, then a block consists of 8 warps

4

Splitting work

• Example: input dimensions are 1600 x 1600:
• we want to create 100 x 100 blocks
• each block consists of 16 x 16 threads

• Create 10 000 blocks with 256 threads:
• blocks numbered 0 … 9999
• threads numbered 0 … 255

• Convert block & thread index to (i, j) pair:
• thread number 123 in block number 4567

computes the result for i = ??? and j = ???

5

Splitting work

• Example: input dimensions are 1600 x 1600:
• we want to create 100 x 100 blocks
• each block consists of 16 x 16 threads

• Create 10 000 blocks with 256 threads:
• blocks numbered 0 … 9999
• threads numbered 0 … 255

• Convert block & thread index to (i, j) pair:
• thread number 123 = 7 · 16 + 11 in block number 4567 = 45 · 100 + 67

computes the result for i = 67 · 16 + 11 and j = 45 · 16 + 7

6

Splitting work: using 2D indexes

• Example: input dimensions are 1600 x 1600:
• we want to create 100 x 100 blocks
• each block consists of 16 x 16 threads

• Create 10 000 blocks with 256 threads using 2D indexes:
• blocks numbered (0, 0) … (99, 99)
• threads numbered (0, 0) … (15, 15)

• Convert block & thread coordinates to (i, j) pair:
• thread number (11 , 7) in block number (67 , 45)

computes the result for i = 67 · 16 + 11 and j = 45 · 16 + 7

7

Splitting work: rounding

• Example: input dimensions are 1601 x 1601:
• we want to create 101 x 101 blocks
• each block consists of 16 x 16 threads

• Create 10 000 blocks with 256 threads using 2D indexes:
• blocks numbered (0, 0) … (100, 100)
• threads numbered (0, 0) … (15, 15)

• There will be some threads with i ≥ 1601 and/or j ≥ 1601,
they will do nothing

8

__global__ void mykernel(float* r, const float* d, int n) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int j = threadIdx.y + blockIdx.y * blockDim.y;
if (i >= n || j >= n)

return;
float v = HUGE_VALF;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
9

x y

x + y = z

i j

···

k

···

What if n is not a
multiple of 16

blockDim.x = 16
blockDim.y = 16

float* dGPU = NULL;
cudaMalloc((void**)&dGPU, n * n * sizeof(float));
float* rGPU = NULL;
cudaMalloc((void**)&rGPU, n * n * sizeof(float));
cudaMemcpy(dGPU, d, n * n * sizeof(float),

cudaMemcpyHostToDevice);

dim3 dimBlock(16, 16);
dim3 dimGrid(divup(n, dimBlock.x), divup(n, dimBlock.y));
mykernel<<<dimGrid, dimBlock>>>(rGPU, dGPU, n);

cudaMemcpy(r, rGPU, n * n * sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(dGPU); cudaFree(rGPU);

10

n/16, rounded up

Performance

• Test input: n = 6300

• Maari computers:
• baseline CPU solution: 397 s
• best CPU solution: 2.3 s
• current GPU solution: 42 s

• What is the bottleneck?

11

Memory

• A key challenge in CPU code:
getting data fast enough from the CPU memory

• A key challenge in GPU code:
getting data fast enough from the GPU memory

12

Memory access pattern

• Blocks are divided in warps
• warp = 32 threads

• Entire warp executes synchronously

• If one thread reads some memory,
all threads of the warp read some memory

13

14

GPU memory:

warp of threads:

15

GPU memory:

warp of threads:

16

GPU memory:

warp of threads:

17

GPU memory:

warp of threads:

18

GPU memory:

warp of threads:

19

GPU memory:

warp of threads:

Memory access pattern

• One memory read in kernel:
entire warp of threads reads memory simultaneously

• Threads access small continuous parts of memory:
need to load few cache lines → good

• Threads access 32 different locations far from each other:
need to load many cache lines → bad

20

21

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
...

}

First warp:

thread 0: i = 0, j = 0
thread 1: i = 1, j = 0
thread 2: i = 2, j = 0
thread 3: i = 3, j = 0
…
thread 31: i = 15, j = 1

Pay attention
to this index!

22

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
...

}

First warp, first iteration:

threads 0 & 16: read d[0]
threads 1 & 17: read d[1000]
threads 2 & 18: read d[2000]
threads 3 & 19: read d[3000]
···

Bad

23

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
...

}

First warp, first iteration:

threads 0 & 16: read d[0]
threads 1 & 17: read d[1000]
threads 2 & 18: read d[2000]
threads 3 & 19: read d[3000]
···

threads 0–15: read d[0]
threads 16–31: read d[1]Good

Bad

24

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
...

}

First warp, second iteration:

threads 0 & 16: read d[1]
threads 1 & 17: read d[1001]
threads 2 & 18: read d[2001]
threads 3 & 19: read d[3001]
···

threads 0–15: read d[1000]
threads 16–31: read d[1001]Good

Bad

25

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
...

}

First warp, third iteration:

threads 0 & 16: read d[2]
threads 1 & 17: read d[1002]
threads 2 & 18: read d[2002]
threads 3 & 19: read d[3002]
···

threads 0–15: read d[2000]
threads 16–31: read d[2001]Good

Bad

26

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float x = d[n*j + k];
float y = d[n*k + i];
...

}

r[n*i + j] = v;
r[n*j + i] = v;

Exchange the
roles of i and j

27

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*j + k];
float y = d[n*k + i];
...

}

First warp, first iteration:

threads 0–15: read d[0]
threads 16–31: read d[1000]Good

28

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*j + k];
float y = d[n*k + i];
...

}

First warp, first iteration:

threads 0–15: read d[0]
threads 16–31: read d[1000]

threads 0 & 16: read d[0]
threads 1 & 17: read d[1]
threads 2 & 18: read d[2]
···

Good

Good

29

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*j + k];
float y = d[n*k + i];
...

}

First warp, second iteration:

threads 0–15: read d[1]
threads 16–31: read d[1001]

threads 0 & 16: read d[1000]
threads 1 & 17: read d[1001]
threads 2 & 18: read d[1002]
···

Good

Good

30

int i = threadIdx.x + ...
int j = threadIdx.y + ...
for (... ++k) {

float x = d[n*j + k];
float y = d[n*k + i];
...

}

First warp, third iteration:

threads 0–15: read d[2]
threads 16–31: read d[1002]

threads 0 & 16: read d[2000]
threads 1 & 17: read d[2001]
threads 2 & 18: read d[2002]
···

Good

Good

Performance

• V0: baseline — 42 s

• V1: better memory access pattern — 8 s

• But we can do much better by applying familiar ideas:
• reuse data in registers
• reuse data in “cache” (here: shared memory)

31

Performance
V0: baseline

V1: memory access

V2: registers

V3: shared memory

32

