
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 1A:
What is this course about? · Why parallelism?

Performance, in practice!

• Main goal: learning to write code that runs very fast on
modern computers

• The only way to get there: write programs that
do lots of independent things in parallel

2

150-fold
speedups?
On a single computer,
with a 4-core
processor?

3

Performance, in practice!

• “Solve this problem, using this computer,
for this input, as fast as possible”
• you will write a program
• we will measure how long it takes to run

• Grading: correct solution & good performance

4

Performance, in practice!

• We will focus on the good parts
• getting the job done, with minimal effort, in practice
• tools that are as simple as possible — without sacrificing performance

• Emphasis on understanding
• demystifying hardware
• learning to predict performance

• This is engineering
• based on understanding, math, science, and good practices
• but requires creativity and experimentation

5

Prerequisites

• Necessary:
• good understanding of computer programming,

algorithms and data structures
• working knowledge of C or C++

• Not needed:
• knowledge of parallel programming

6

Why parallelism?
The only way to get good performance nowadays

7

Modern computers are
massively parallel
• Multiple CPU cores

• Multiple execution units per core

• Execution units can perform vector operations

• Execution units are pipelined
• no need to wait for one operation to finish before starting the next one

• And then there is a massively parallel GPU…
• we can do general-purpose computation on the graphics processor

8

All new performance comes
from parallelism
• Sequential performance stopped improving around 2000

• All new performance comes from parallelism

• New code is needed

• Traditional C++ code might use less than 1% of
the capabilities of your computer

9

Moore’s law
1965 prediction:

number of transistors
in integrated circuits
grows exponentially

10

Gordon E. Moore: “Cramming more components onto integrated circuits”,
Electronics Magazine 1965 (reprinted in Proc. IEEE, vol. 86, issue 1, 1998)

Moore’s law
1965 prediction:

number of transistors
in integrated circuits
grows exponentially

2020: yes, still true!

11

Gordon E. Moore: “Cramming more components onto integrated circuits”,
Electronics Magazine 1965 (reprinted in Proc. IEEE, vol. 86, issue 1, 1998)

Moore’s law
Year Transistors CPU model
1975 3 000 6502
1979 30 000 8088
1985 300 000 386
1989 1 000 000 486
1995 6 000 000 Pentium Pro
2000 40 000 000 Pentium 4
2005 100 000 000 2-core Pentium D
2008 700 000 000 8-core Nehalem
2014 6 000 000 000 18-core Haswell
2017 20 000 000 000 32-core AMD Epyc
2019 40 000 000 000 64-core AMD Rome

Still going strong!

But something
has changed…

12

13

Sequential
performance

improving

Parallel
performance

improving

Year Transistors CPU model
1975 3 000 6502
1979 30 000 8088
1985 300 000 386
1989 1 000 000 486
1995 6 000 000 Pentium Pro
2000 40 000 000 Pentium 4
2005 100 000 000 2-core Pentium D
2008 700 000 000 8-core Nehalem
2014 6 000 000 000 18-core Haswell
2017 20 000 000 000 32-core AMD Epyc
2019 40 000 000 000 64-core AMD Rome

14

It takes less time
to complete one

operation

We can do several
operations
in parallel

Year Transistors CPU model
1975 3 000 6502
1979 30 000 8088
1985 300 000 386
1989 1 000 000 486
1995 6 000 000 Pentium Pro
2000 40 000 000 Pentium 4
2005 100 000 000 2-core Pentium D
2008 700 000 000 8-core Nehalem
2014 6 000 000 000 18-core Haswell
2017 20 000 000 000 32-core AMD Epyc
2019 40 000 000 000 64-core AMD Rome

15

Lower latency

Higher throughput

Year Transistors CPU model
1975 3 000 6502
1979 30 000 8088
1985 300 000 386
1989 1 000 000 486
1995 6 000 000 Pentium Pro
2000 40 000 000 Pentium 4
2005 100 000 000 2-core Pentium D
2008 700 000 000 8-core Nehalem
2014 6 000 000 000 18-core Haswell
2017 20 000 000 000 32-core AMD Epyc
2019 40 000 000 000 64-core AMD Rome

Latency vs. throughput

• Latency: time to perform operation, from start to finish

• Throughput: how many operations are completed per time unit
• in the long run

• Example: MSc degrees at Aalto
• latency: ≈ 2 years
• throughput: ≈ 1960 degrees/year
• Aalto is massively parallel!
• education in a sequential manner would yield only 0.5 degrees/year

16

Latency vs. throughput

• Latency: time to perform operation, from start to finish

• Throughput: how many operations are completed per time unit
• in the long run

• Formerly: lower latency → higher throughput

• Nowadays: more parallelism → higher throughput

17

Progress used to look like this

High latency Low latency

18

time time

New kind of progress

No parallelism Lots of parallelism

19

time time

An example

• Typical modern desktop CPU: Intel Core i5-6500 (4 cores)

• Operation: single-precision floating-point multiplication

• Latency: 4 clock cycles

• Sequential throughput: 0.25 operations / cycle

• Parallel throughput: 64 operations / cycle
• we can have 256 operations simultaneously on the fly!

• 200 billion operations per second (clock speed ≈ 3.3 GHz)

20

An example

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

21

An example

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

22

Parallel computing: much
more than just multithreading!

An example

• Multicore: factor 4
• 4 cores, each of them can run independent threads

• Superscalar: factor 2
• each core can initiate 2 multiplications per clock cycle

• Pipelining: factor 4
• no need to wait for operations to finish before starting a new one

• Vectorization: factor 8
• each multiplication can process 8-wide vectors

23

Not only for high-end servers:
your laptop can do all of this!

