
Programming Parallel
Computers
Jukka Suomela · Aalto University · ppc.cs.aalto.fi

Part 1C:
Sample application · Memory access pattern

Sample application:
cheapest 2-hop path

2

8

2
1

9

4
5

d (input):

10

2

Sample application:
cheapest 2-hop path

3

8

2
1

9

4
5

d (input):

10

2

0 1

Cost of traveling
directly 0 → 1

2 + 5 = 7

8

2
1

9

4
5

8

2
1

9

4
5

d (input):

1 00

2

1

2

0 1

Sample application:
cheapest 2-hop path

4

Cost of traveling
0 → 2 → 1

Sample application:
cheapest 2-hop path

5

2 + 5 = 7

8

2
1

9

4
5

8

2
1

9

4
5

7

2
1

3

4
5

r (output):d (input):

1 00

2

1

2

0 1

2

0 1 0 1

8

2
1

9

4
5

8

2
1

9

4
5

2 + 5 = 7

7

2
1

3

4
5

r (output):d (input):

1 00

2

1

2

0 1

2

Sample application:
cheapest 2-hop path

6

d[] = { 0, 8, 2,
1, 0, 9,
4, 5, 0 }

r[] = { 0, 7, 2,
1, 0, 3,
4, 5, 0 }

void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

} 7

x y

x + y = z

i j

···

k

···

Is it fast?

• Benchmark platform: 4-core Intel “Skylake” CPU
• 3.2–3.6 GHz
• Linux, GCC, g++ -O3 -march=native

• Benchmark instance: n = 4000
• 64 billion “+” operations and 64 billion “min” operations

• Running time: 99 seconds
• 1.3 billion useful operations per second
• 0.36 useful operations per clock cycle

8

Is it fast?

• Benchmark platform: 4-core Intel “Skylake” CPU
• 3.2–3.6 GHz
• Linux, GCC, g++ -O3 -march=native

• Benchmark instance: n = 4000
• 64 billion “+” operations and 64 billion “min” operations

• Running time: 99 seconds
• 1.3 billion useful operations per second
• 0.36 useful operations per clock cycle

9

We are using
roughly 0.6% of

the performance
of the CPU

void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

} 10

What went
wrong here?

What went wrong?

• It is not any single thing
• there is no magic quick fix
• take care of one bottleneck and there is another one

• But it does not need to be hard
• not that much work to improve running time from minutes to seconds
• it can really be worth the effort!

• And almost everything is possible
• if we really want, we can engineer a solution that is 150 times faster

and uses 93% (or more?) of the processing power of the CPU

11

Two main challenges

• How to get data fast enough from main memory to CPU?

• Once the data is there, how to do lots of things in parallel?

12

13

CPU

14

CPU

main
memory

15

CPU

main
memory

core

core

core

core

16

CPU

main
memory

core
arithmetic

arithmetic

core
arithmetic

arithmetic

core
arithmetic

arithmetic

core
arithmetic

arithmetic

17

CPU

main
memory

core registersarithmetic

arithmetic

core registersarithmetic

arithmetic

core registersarithmetic

arithmetic

core registersarithmetic

arithmetic

18

CPU

main
memory

L3
cache

core L2 cacheregisters L1arithmetic

arithmetic

core L2 cacheregisters L1arithmetic

arithmetic

core L2 cacheregisters L1arithmetic

arithmetic

core L2 cacheregisters L1arithmetic

arithmetic

19

CPU

main
memory

32 GB

L3
cache

6 MB

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

core L2 cache
256 KB

registers
< 1 KB

L1
32 KB

arithmetic

arithmetic

Two main challenges

• How to get data fast enough from main memory to CPU?
• high latency: fetching one unit of data takes a lot of time
• low throughput: there is not that much bandwidth available

• Once the data is there, how to do lots of things in parallel?
• high arithmetic throughput, but how to exploit it?
• a typical C++ program might use just one arithmetic unit at a time,

in a highly sequential manner
• how to use all arithmetic units efficiently?

20

Current
bottleneck?
Performance as a
function of input size

21

Current
bottleneck?
Performance as a
function of input size

Difficulties getting
data from memory to
CPU once we run out
of L3 cache

22

6 MB
(L3 cache)

void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}

} 23

Innermost
loop

Memory access pattern
for (int k = 0; k < n; ++k) {

float x = d[n*i + k]; // d[0], d[1], d[2], ...
float y = d[n*k + j]; // d[0], d[4000], d[8000], ...
float z = x + y;
v = min(v, z);

}

24

Memory access pattern
for (int k = 0; k < n; ++k) {

float x = d[n*i + k]; // d[0], d[1], d[2], ...
float y = d[n*k + j]; // d[0], d[4000], d[8000], ...
float z = x + y;
v = min(v, z);

}

25

Rule of thumb:
linear scanning

is good

Memory access pattern
for (int k = 0; k < n; ++k) {

float x = d[n*i + k]; // d[0], d[1], d[2], ...
float y = d[n*k + j]; // d[0], d[4000], d[8000], ...
float y = t[n*j + k]; // t[0], t[1], t[2], ...
float z = x + y;
v = min(v, z);

}

26

Array t =
transpose
of array d

Current
bottleneck?
It no longer matters
where the input data is

27

Current
bottleneck?
It no longer matters
where the input data is

Problem: calculations
done in a sequential
order

28

