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Sample application:
cheapest 2-hop path

2

8

2
1

9

4
5

d (input):

10

2
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2 + 5 = 7
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Cost of traveling
0 → 2 → 1



Sample application:
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d[] = { 0, 8, 2,
1, 0, 9,
4, 5, 0 }

r[] = { 0, 7, 2,
1, 0, 3,
4, 5, 0 }



void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}
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Is it fast?

• Benchmark platform: 4-core Intel “Skylake” CPU
• 3.2–3.6 GHz
• Linux, GCC,  g++ -O3 -march=native

• Benchmark instance: n = 4000
• 64 billion “+” operations and 64 billion “min” operations

• Running time: 99 seconds
• 1.3 billion useful operations per second
• 0.36 useful operations per clock cycle
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We are using 
roughly 0.6% of 

the performance 
of the CPU



void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
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}
}
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What went 
wrong here?



What went wrong?

• It is not any single thing
• there is no magic quick fix
• take care of one bottleneck and there is another one

• But it does not need to be hard
• not that much work to improve running time from minutes to seconds
• it can really be worth the effort!

• And almost everything is possible
• if we really want, we can engineer a solution that is 150 times faster 

and uses 93% (or more?) of the processing power of the CPU
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Two main challenges

• How to get data fast enough from main memory to CPU?

• Once the data is there, how to do lots of things in parallel?
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Two main challenges

• How to get data fast enough from main memory to CPU?
• high latency: fetching one unit of data takes a lot of time
• low throughput: there is not that much bandwidth available

• Once the data is there, how to do lots of things in parallel?
• high arithmetic throughput, but how to exploit it?
• a typical C++ program might use just one arithmetic unit at a time,

in a highly sequential manner
• how to use all arithmetic units efficiently?
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Current 
bottleneck?
Performance as a 
function of input size
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Current 
bottleneck?
Performance as a 
function of input size

Difficulties getting
data from memory to 
CPU once we run out
of L3 cache
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void step(float* r, const float* d, int n) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
float v = infinity;
for (int k = 0; k < n; ++k) {

float x = d[n*i + k];
float y = d[n*k + j];
float z = x + y;
v = min(v, z);

}
r[n*i + j] = v;

}
}
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Innermost 
loop



Memory access pattern
for (int k = 0; k < n; ++k) {

float x = d[n*i + k]; // d[0], d[1], d[2], ...
float y = d[n*k + j]; // d[0], d[4000], d[8000], ...
float z = x + y;
v = min(v, z);

}
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Memory access pattern
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Rule of thumb:
linear scanning 

is good



Memory access pattern
for (int k = 0; k < n; ++k) {

float x = d[n*i + k]; // d[0], d[1], d[2], ...
float y = d[n*k + j]; // d[0], d[4000], d[8000], ...
float y = t[n*j + k]; // t[0], t[1], t[2], ...
float z = x + y;
v = min(v, z);

}
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Array t = 
transpose
of array d



Current 
bottleneck?
It no longer matters 
where the input data is
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Current 
bottleneck?
It no longer matters 
where the input data is

Problem: calculations 
done in a sequential
order
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